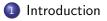
Methodologies and Algorithms for Structured Mixed-Integer Nonlinear Optimization

Andrés Gómez

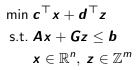
Department of Industrial & Systems Engineering University of Southern California

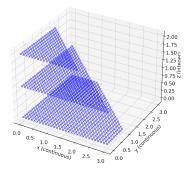
MIP Workshop 2025

Agenda



- 2 Branch and bound
- 3 Convexification



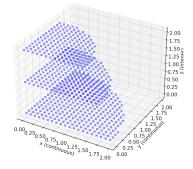


- Usually solved using branch-and-cut
- NP-hard in theory, often solvable in practice

$$\begin{array}{l} \min f(\boldsymbol{x}, \boldsymbol{z}) \\ \text{s.t. } g_i(\boldsymbol{x}, \boldsymbol{z}) \leq 0 \qquad \quad i = 1, \dots, p \\ \boldsymbol{x} \in \mathbb{R}^n, \ \boldsymbol{z} \in \mathbb{Z}^m \end{array}$$



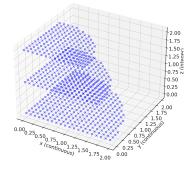
$$\begin{array}{l} \min f(\boldsymbol{x}, \boldsymbol{z}) \\ \text{s.t. } g_i(\boldsymbol{x}, \boldsymbol{z}) \leq 0 \qquad \quad i = 1, \dots, p \\ \boldsymbol{x} \in \mathbb{R}^n, \ \boldsymbol{z} \in \mathbb{Z}^m \end{array}$$



• Undecidable Includes Hilbert's 10th problem

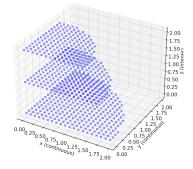
• Given polynomial g, does there exist $z \in \mathbb{Z}^n$ satisfying g(z) = 0

$$\begin{array}{l} \min \ f(\boldsymbol{x}, \boldsymbol{z}) \\ \text{s.t.} \ g_i(\boldsymbol{x}, \boldsymbol{z}) \leq 0 \\ \boldsymbol{x} \in \mathbb{R}^n, \ \boldsymbol{z} \in \mathbb{Z}^m \end{array} \hspace{1.5cm} i = 1, \dots, p \\ \end{array}$$



- Undecidable Includes Hilbert's 10th problem
 - Given polynomial g, does there exist $z \in \mathbb{Z}^n$ satisfying g(z) = 0
- Unstructured Letting $g(z) = z z^2$, $z \in \{0, 1\} \Leftrightarrow g(z) = 0$

$$\begin{array}{l} \min \ f(\boldsymbol{x}, \boldsymbol{z}) \\ \text{s.t.} \ g_i(\boldsymbol{x}, \boldsymbol{z}) \leq 0 \\ \boldsymbol{x} \in \mathbb{R}^n, \ \boldsymbol{z} \in \mathbb{Z}^m \end{array} \hspace{1.5cm} i = 1, \dots, p \\ \end{array}$$



- Undecidable Includes Hilbert's 10th problem
 - Given polynomial g, does there exist $z \in \mathbb{Z}^n$ satisfying g(z) = 0
- Unstructured Letting $g(z) = z z^2$, $z \in \{0, 1\} \Leftrightarrow g(z) = 0$
- \rightarrow We assume continuous relaxation is "nice" (e.g., f and g_i are convex)

 $i=1,\ldots,p$

Mixed-integer nonlinear optimization (MINLO)

 $\begin{array}{l} \min f(\boldsymbol{x}, \boldsymbol{z}) \\ \text{s.t. } g_i(\boldsymbol{x}, \boldsymbol{z}) \leq 0 \\ \boldsymbol{x} \in \mathbb{R}^n, \ \boldsymbol{z} \in \mathbb{Z}^m \end{array}$

Transformations

- Objective is linear: min y s.t. $f(x, z) \le y$
- Single constraint: $g(x, z) \le 0$ with $g(x, z) = \max_i g_i(x, z)$

• Unconstrained:
$$F(x, z) = \begin{cases} f(x, z) & \text{if } g(x, z) \leq 0 \\ \infty & \text{otherwise} \end{cases}$$

Current "state-of-the-art" for MINLO

Much less understood and mature than MILOs

• Concepts like number of variables/constraints are "uninformative"

• Most solvers and researchers are focused elsewhere

• Unlike MILOs, most of the heavy-lifting is left to the user

Agenda

2 Branch and bound

- Branch and bound for MILO
- Branch and bound for MINLO

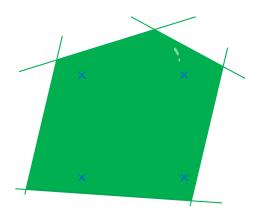
Convexification

Agenda

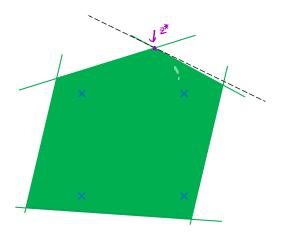
Branch and bound

- Branch and bound for MILO
- Branch and bound for MINLO

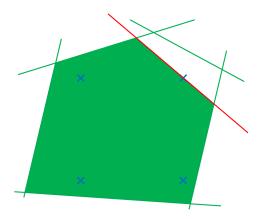
Discrete feasible region



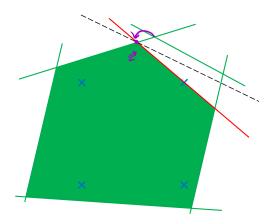
Linear programming relaxation



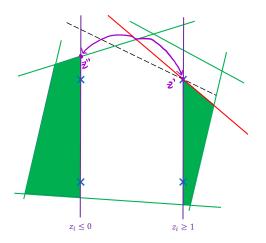
Solve (extreme point solution)



Improve relaxation (cutting plane)



Solve (dual simplex)



Branch and resolve (dual simplex with two independent subproblems)

Algorithm To solve a mixed-integer linear program

- Start with a linear relaxation
- Dynamically refine using cutting planes
- Branch when needed
- Reoptimize using the simplex method
- When upper bound (best solution) = lower bound (relaxation), stop

Other techniques

- Heuristics, often based on rounding solutions from linear relaxations
- Presolve, to improve the initial linear relaxation

Algorithm To solve a mixed-integer linear program

- Start with a linear relaxation
- Dynamically refine using cutting planes
- Branch when needed
- Reoptimize using the simplex method
- When upper bound (best solution) = lower bound (relaxation), stop
- Other techniques
 - Heuristics, often based on rounding solutions from linear relaxations
 - Presolve, to improve the initial linear relaxation

Algorithms revolve around deriving and exploiting linear relaxations

Agenda

Branch and bound

- Branch and bound for MILO
- Branch and bound for MINLO

The same algorithm works!

The same algorithm works!

...but how to solve the continuous relaxations?

Second order methods

- Hard to warm start (after branching or cuts)
- Memory intensive
- $\rightarrow\,$ Adds up when # nodes $>10^{6}$

First order methods

- May struggle in heavily constrained problems
- High-quality solutions difficult to obtain
- $\rightarrow\,$ Numerical precision can be an issue

Numerical precision is a very real issue in MINLO

C:\WINDOWS\system32\cmd.exe - run.bat

0	0	0.0029	3	Cone: 235 847	
0	0	0.0029	161	0.0029 874	
* 0	+ 0			0.1800 0.0029	98.38%
0	0	0.0029	200	0.1800 MIRcuts: 1 959	98.37%
0	0	0.0029	200	0.1800 MIRcuts: 1 987	98.37%
* 0	+ 0			0.0035 0.0029	16.90%
0		0.0029	200	0.0035 0.0029 1016	16.65%
Elapsed	time = 1	.66 sec. (354	8.12 t	icks, tree = 0.01 MB, solutions = 2)	
3		0.0029	198	0.0035 0.0029 1104	16.36%
6	8	0.0029	195	0.0035 0.0029 1189	16.36%
9	11	0.0029	193	0.0035 0.0029 1276	16.36%
Integer	feasible	solution rej	ected	infeasible on original model	
10	12	0.0029	192	0.0035 0.0029 1305	16.36%
13	15	0.0029	190	0.0035 0.0029 1400	16.36%
16	18	0.0029	187	0.0035 0.0029 1490	16.36%
19	21	0.0030	185	0.0035 0.0029 1583	16.36%
Integer	feasible	solution rej	ected	infeasible on original model	
20	22	0.0029		0.0035 0.0029 1616	16.36%
23		0.0029			16.36%
Integer	feasible	solution rej	ected	infeasible on original model	
32		0.0029			16.36%
				icks, tree = 0.01 MB, solutions = 2)	
Integer	feasible	solution rej	ected	infeasible on original model	
42		0.0029	165		16.36%
				infeasible on original model	
				infeasible on original model	
50		0.0029			16.36%
				infeasible on original model	
60	62	0.0029	147		16.36%
Integer	feasible	solution rej	ected	infeasible on original model	

Portfolio optimization

Given potential investments $\{1, ..., n\}$, find a <u>small</u> portfolio maximizing return and minimizing risk

- Decision variables $\mathbf{x} \in \mathbb{R}^n$, where $x_i = \%$ invested in security *i*
- Return $\mu \in \mathbb{R}^n$, where μ_i = expected profit of investment i \rightarrow Total return: $\mu^{\top} \mathbf{x}$
- Risk $\Sigma \in \mathbb{R}^{n \times n}$, where Σ_{ij} = covariance of returns from *i* and *j* \rightarrow Variance of portfolio: $\mathbf{x}^{\top} \Sigma \mathbf{x}$
- Size # of nonzero elements of x is small

Portfolio optimization

$$\max_{\mathbf{x}, \mathbf{z}} \boldsymbol{\mu}^{\top} \mathbf{x}$$

s.t. $\mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x} \leq \alpha$
 $\mathbf{1}^{\top} \mathbf{x} = 1$
 $\mathbf{0} \leq \mathbf{x} \leq \mathbf{z}$
 $\mathbf{1}^{\top} \mathbf{z} \leq k$
 $\mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n}$

$$\min_{\mathbf{x}, \mathbf{z}} \mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}$$
s.t. $\boldsymbol{\mu}^{\top} \mathbf{x} \ge \boldsymbol{\beta}$
 $\mathbf{1}^{\top} \mathbf{x} = 1$
 $\mathbf{0} \le \mathbf{x} \le \mathbf{z}$
 $\mathbf{1}^{\top} \mathbf{z} \le k$
 $\mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n}$

Which formulation is preferable?

min f(x, z)s.t. $Ax + Gz \le b$ $x \in \mathbb{R}^n, z \in \mathbb{Z}^m$

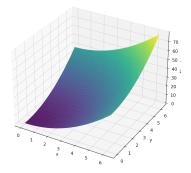
where f is quadratic

Continuous relaxations can be solved via the simplex method¹²

Keeping quadratic terms in the objective seems to help in MINLO

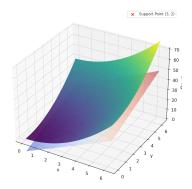
¹Wolfe P (1959) The Simplex method for quadratic programming. *Econometrica* ²Van de Panne C and Whinston A (1964) Simplicial methods for quadratic programming. *Naval Research Logistics*

Linear outer approximations



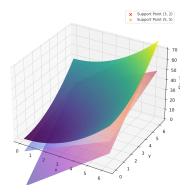
Consider constraint $f(\mathbf{x}) \leq t$

Linear outer approximations



Consider constraint $f(\mathbf{x}) \leq t$ Given $\overline{\mathbf{x}}$, can be relaxed as $f(\overline{\mathbf{x}}) + \nabla f(\overline{\mathbf{x}})^{\top} (\mathbf{x} - \overline{\mathbf{x}}) \leq t$

Linear outer approximations



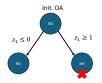
Consider constraint $f(\mathbf{x}) \leq t$

Given $\overline{\mathbf{x}}$, can be relaxed as $f(\overline{\mathbf{x}}) + \nabla f(\overline{\mathbf{x}})^{\top} (\mathbf{x} - \overline{\mathbf{x}}) \leq t$

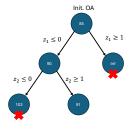
This process can be repeated for different support points

- Assume UB=100
- Construct an initial linear OA

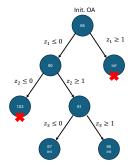
- Assume UB=100
- Construct an initial linear OA
- Branching, pruning by bound/infeasibility as usual



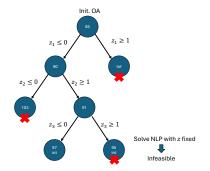
- Assume UB=100
- Construct an initial linear OA
- Branching, pruning by bound/infeasibility as usual



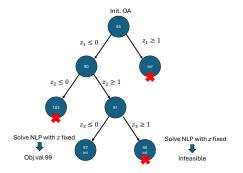
- Assume UB=100
- Construct an initial linear OA
- Branching, pruning by bound/infeasibility as usual



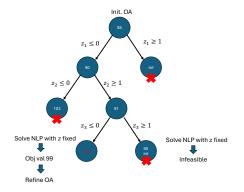
- Assume UB=100
- Construct an initial linear OA
- Branching, pruning by bound/infeasibility as usual
- Integer nodes might be infeasible



- Assume UB=100
- Construct an initial linear OA
- Branching, pruning by bound/infeasibility as usual
- Integer nodes might be infeasible
- Incumbents obj values need to be handled carefully



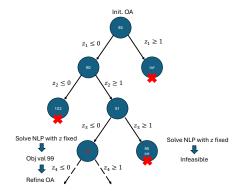
- Assume UB=100
- Construct an initial linear OA
- Branching, pruning by bound/infeasibility as usual
- Integer nodes might be infeasible
- Incumbents obj values need to be handled carefully



Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?

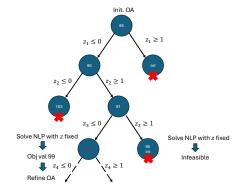
- Assume UB=100
- Construct an initial linear OA
- Branching, pruning by bound/infeasibility as usual
- Integer nodes might be infeasible
- Incumbents obj values need to be handled carefully
- No pruning at integer nodes



Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?

- Assume UB=100
- Construct an initial linear OA
- Branching, pruning by bound/infeasibility as usual
- Integer nodes might be infeasible
- Incumbents obj values need to be handled carefully
- No pruning at integer nodes



How to best construct linear outer approximations?

Assume support points $\{\bar{\mathbf{x}}^{j}\}_{j=1}^{r}$ and approximate³

$$f(\mathbf{x}) = \sum_{i=1}^{n} h_i(x_i)?$$

Direct Add *r* linear inequalities

$$f(\mathbf{x}) \geq f(\bar{\mathbf{x}}^j) + \nabla f(\bar{\mathbf{x}}^j)^\top (\mathbf{x} - \bar{\mathbf{x}}^j), \ \forall j = 1, \dots, r$$

 $^{^{3}}$ Tawarmalani M and Sahinidis N (2005) A polyhedral branch-and-cut approach to global optimization. *Mathematical Programming*

Assume support points $\{\bar{\mathbf{x}}^{j}\}_{j=1}^{r}$ and approximate³

$$f(\mathbf{x}) = \sum_{i=1}^{n} h_i(x_i)$$

Direct Add *r* linear inequalities

$$f(\mathbf{x}) \geq f(\bar{\mathbf{x}}^{j}) + \nabla f(\bar{\mathbf{x}}^{j})^{\top} (\mathbf{x} - \bar{\mathbf{x}}^{j}), \ \forall j = 1, \dots, r$$

Extended Add *n* variables and *nr* linear inequalities

$$f(\mathbf{x}) \ge \sum_{i=1}^{n} y_i$$

$$y_i \ge h_i(\bar{x}_i^j) + h'_i(\bar{x}_i^j)(x_i^j - \bar{x}_i^j), \quad \forall i = 1, ..., n, \ j = 1, ..., n$$

 3 Tawarmalani M and Sahinidis N (2005) A polyhedral branch-and-cut approach to global optimization. *Mathematical Programming*

Example Outer approximate function

$$f(\mathbf{x}) = |x_1| + |x_2| + |x_3| + |x_4|$$

Example Outer approximate function

$$f(\mathbf{x}) = |x_1| + |x_2| + |x_3| + |x_4|$$

Direct Add $2^n = 16$ linear inequalities

 $\begin{aligned} f(\mathbf{x}) &\geq x_1 + x_2 + x_3 + x_4, & f(\mathbf{x}) \geq x_1 + x_2 + x_3 - x_4, & f(\mathbf{x}) \geq x_1 + x_2 - x_3 + x_4, \\ f(\mathbf{x}) &\geq x_1 + x_2 - x_3 - x_4, & f(\mathbf{x}) \geq x_1 - x_2 + x_3 + x_4, & f(\mathbf{x}) \geq x_1 - x_2 + x_3 - x_4. \end{aligned}$

Example Outer approximate function

$$f(\mathbf{x}) = |x_1| + |x_2| + |x_3| + |x_4|$$

Direct Add $2^n = 16$ linear inequalities

$$\begin{aligned} f(\mathbf{x}) &\geq x_1 + x_2 + x_3 + x_4, & f(\mathbf{x}) \geq x_1 + x_2 + x_3 - x_4, & f(\mathbf{x}) \geq x_1 + x_2 - x_3 + x_4, \\ f(\mathbf{x}) &\geq x_1 + x_2 - x_3 - x_4, & f(\mathbf{x}) \geq x_1 - x_2 + x_3 + x_4, & f(\mathbf{x}) \geq x_1 - x_2 + x_3 - x_4, \\ \vdots \end{aligned}$$

Extended Add n = 4 variables and 2n = 8 linear inequalities

$$f(\mathbf{x}) \ge \sum_{i=1}^{n} y_i$$

$$y_i \ge x_i, \ y_i \ge -x_i \quad i = 1, \dots, 4$$

Proposition (Tawarmalani and Sahinidis 2005)

For separable functions, the extended formulation with support points $\{\bar{x}^j\}_{j=1}^r$ is equivalent to the direct linear outer approximation supported at every x such that for every $i \in [n]$ there exists $j \in [r]$ such that $x_i = \bar{x}_i^j$.

● Polynomial extended formulations ⇔ Exponential direct OA

● Linear ineqs in extended space ⇔ Nonlinear ineqs in original space

Quadratic functions

$$f(\mathbf{x}) = 5x_1^2 + 4x_2^2 + 9x_3^2 + 4x_1x_2 + 6x_1x_3 + 12x_2x_3$$

Quadratic functions

$$f(\mathbf{x}) = 5x_1^2 + 4x_2^2 + 9x_3^2 + 4x_1x_2 + 6x_1x_3 + 12x_2x_3$$

$$f(\mathbf{x}) = (x_1 + 2x_2 + 3x_3)^2 + 4x_1^2$$

Quadratic functions

$$f(\mathbf{x}) = 5x_1^2 + 4x_2^2 + 9x_3^2 + 4x_1x_2 + 6x_1x_3 + 12x_2x_3$$

$$f(\mathbf{x}) = (x_1 + 2x_2 + 3x_3)^2 + 4x_1^2$$

$$f(\mathbf{x}) = x_4^2 + 4x_1^2 \text{ with } x_4 = x_1 + 2x_2 + 3x_3$$

Quadratic functions

$$f(\mathbf{x}) = 5x_1^2 + 4x_2^2 + 9x_3^2 + 4x_1x_2 + 6x_1x_3 + 12x_2x_3$$

$$f(\mathbf{x}) = (x_1 + 2x_2 + 3x_3)^2 + 4x_1^2$$

$$f(\mathbf{x}) = x_4^2 + 4x_1^2 \text{ with } x_4 = x_1 + 2x_2 + 3x_3$$

Any convex quadratic function of rank k can be written as a separable function with k additional variables

 \rightarrow Cholesky decomposition, eigendecomposition...

Conic quadratic functions ⁴ (Handling the Lorentz cone)

$$x_0 \ge \sqrt{\sum_{i=1}^n x_i^2}$$

⁴Vielma JP et al (2017) Extended formulations in mixed-integer conic quadratic programming. *Mathematical Programming Computation*

Conic quadratic functions ⁴ (Handling the Lorentz cone)

$$x_0 \ge \sqrt{\sum_{i=1}^n x_i^2}$$

 $\Leftrightarrow x_0^2 \ge \sum_{i=1}^n x_i^2 \text{ and } x_0 \ge 0$

⁴Vielma JP et al (2017) Extended formulations in mixed-integer conic quadratic programming. *Mathematical Programming Computation*

Conic quadratic functions ⁴ (Handling the Lorentz cone)

$$x_0 \ge \sqrt{\sum_{i=1}^n x_i^2}$$

$$\Leftrightarrow x_0^2 \ge \sum_{i=1}^n x_i^2 \text{ and } x_0 \ge 0$$

$$\Leftrightarrow x_0 \ge \sum_{i=1}^n x_i^2 / x_0 \text{ and } x_0 \ge 0$$

$$\Leftrightarrow x_0 \ge \sum_{i=1}^n y_i \text{ and } x_0 \ge 0, \ y_i \ge x_i^2 / x_0, \forall i \in [n]$$

⁴Vielma JP et al (2017) Extended formulations in mixed-integer conic quadratic programming. *Mathematical Programming Computation*

Conic quadratic functions ⁴ (Handling the Lorentz cone)

$$x_0 \ge \sqrt{\sum_{i=1}^n x_i^2}$$

$$\Leftrightarrow x_0^2 \ge \sum_{i=1}^n x_i^2 \text{ and } x_0 \ge 0$$

$$\Leftrightarrow x_0 \ge \sum_{i=1}^n x_i^2 / x_0 \text{ and } x_0 \ge 0$$

$$\Leftrightarrow x_0 \ge \sum_{i=1}^n y_i \text{ and } x_0 \ge 0, \ y_i \ge x_i^2 / x_0, \forall i \in [n]$$

20x speedup when first implemented

⁴Vielma JP et al (2017) Extended formulations in mixed-integer conic quadratic programming. *Mathematical Programming Computation*

Summary

- Lack of dual simplex hampers algorithms
- Several approach exist in the literature ⁵
- Several popular approaches rely on linear outer approximations
- Effective implementations: integrated with branch-and-bound, calls to interior point method, addition of variables, reformulations...
- In practice, varying degrees of success

⁵Kronqvist J et al (2019) A review and comparison of solvers for convex MINLP. *Optimization and Engineering*

Agenda

Introduction

2 Branch and bound

3 Convexification

- Convexification for MILO
- Convexification for MINLO in sparse regression

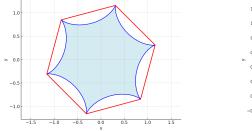
- 3 Convexification
 - Convexification for MILO
 - Convexification for MINLO in sparse regression

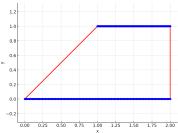
Convex hull

Definition

Given a set $X \subseteq \mathbb{R}^n$, the <u>convex hull</u> of X, denoted as conv(X), is

- The smallest convex set containing X
- The set of all convex combinations of points in X.





Convex optimization

Consider the optimization
$$\min_{\mathbf{x}\in X} \mathbf{a}^\top \mathbf{x}$$

Proposition

If set X is <u>convex</u>, then any local minimum is a global minimum.

Intuition: Optimization over set X is "easy" under convexity

Convex optimization

Consider the optimization $\min_{\mathbf{x}\in X} \mathbf{a}^{\top}\mathbf{x}$

Proposition

If set X is <u>convex</u>, then any local minimum is a global minimum.

Intuition: Optimization over set X is "easy" under convexity

Proposition

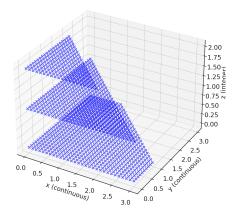
The optimization problem is equivalent to

 $\min_{\boldsymbol{x}\in conv(\boldsymbol{X})} \boldsymbol{a}^{\top}\boldsymbol{x},$

i.e., there exist a solution that is optimal for both.

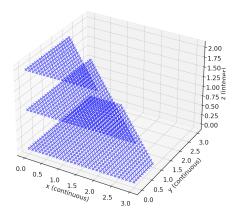
Intuition: Any optimization problem can be reduced to a convex problem

Convexification in mixed-integer linear optimization



What is the convex hull?

Convexification in mixed-integer linear optimization



 $x + y + z \le 4$ $0 \le x \le 3$ $0 \le y \le 3$ $0 \le z \le 2, \ z \in \mathbb{Z}$

What is the convex hull?

Convexification in mixed-integer linear optimization

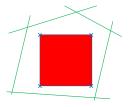
Proposition (Meyer 1974)

The convex hull of set $\{x \in \mathbb{R}^n, z \in \mathbb{Z}^m : Ax + Gz \leq b\}$ is a polyhedron.

Linear relaxation

Convex hull





Convexification for MILO

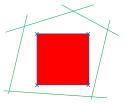
Convexification in mixed-integer linear optimization

Proposition (Meyer 1974)

The convex hull of set $\{x \in \mathbb{R}^n, z \in \mathbb{Z}^m : Ax + Gz \leq b\}$ is a polyhedron.

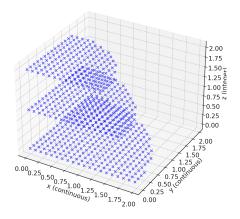
Linear relaxation

Convex hull



Instead of computing exact convex hulls, convexifications are dynamically added to branch-and-bound algorithms via cutting planes

Convexification in mixed-integer nonlinear optimization



$$x^{2} + y^{2} + z \le 4$$

$$0 \le x \le 3$$

$$0 \le y \le 3$$

$$0 \le z \le 2, \ z \in \mathbb{Z}$$

What is the convex hull? How to implement in practice?

3 Convexification

- Convexification for MILO
- Convexification for MINLO in sparse regression

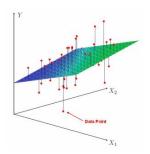
Least squares regression

Consider dataset⁶ $\{(\mathbf{x_i}, y_i)\}_{i=1}^m$ where $\mathbf{x_i} \in \mathbb{R}^n$

Least squares with ridge regularization

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} \sum_{i=1}^m (y_i - \boldsymbol{a}_i^\top \boldsymbol{x})^2 + \lambda \sum_{j=1}^n x_j^2$$

for some $\lambda \geq 0$



⁶Hoerl AE and Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal problems. *Technometrics*

Shortcomings of ordinary least squares

Prone to overfitting

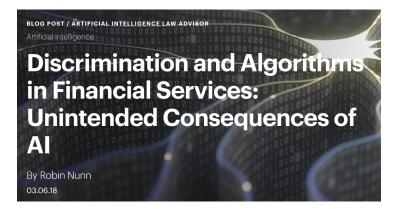
STOP GLOBAL WARMING: BECOME A PIRATE



WWW.VENGANZA.ORG

Can fail to make meaningful predictions out-of-sample

Shortcomings of ordinary least squares



In some cases, interpretability is far more important than accuracy

Linear regression

Least squares in action with the "Communities and crime" dataset

- Data with socio-economic data, law enforcement data and crime data (US census, LEMAS survey and FBI)
- n = 100 features, m = 1993 cities

Linear regression

Least squares in action with the "Communities and crime" dataset

- Data with socio-economic data, law enforcement data and crime data (US census, LEMAS survey and FBI)
- n = 100 features, m = 1993 cities

Solution metrics Optimal solution found in milliseconds, $R^2 = 0.84$

Linear regression

Least squares in action with the "Communities and crime" dataset

- Data with socio-economic data, law enforcement data and crime data (US census, LEMAS survey and FBI)
- n = 100 features, m = 1993 cities

Solution metrics Optimal solution found in milliseconds, $R^2 = 0.84$ Solution

MispTerCap	0.0266552	PctRecImnip5	0.0561141
Iccs/Facent	0.280901	FctRecentInnig	
LandArea	0.0215684	PctSameCity05	
LemasPotOfficBrugUs	0.0295357	FctSameRouse85	
MalePrtDivorce	0.189407	FctSameState05	
MaleFetNerMarr	0.0171952	PctSpeakEnglOsly	0.0196796
NodSunR3	0.0124658	PctTeen2Par	-0.0141065
MedDesCostFctInc	-0.0122171	FctUsesplayed	-0.0140211
MedDesCostFitIncNoNtg	-0.0140048	FCLUssFul/Trans	
MedRent	0.0501259	FCEVACHORE ÉMOS	
MedRentFitHossInc	0.0525401	PotyzcastBoarded	0.0531563
Mediremousemilt	0.0015325	FICHIFULIFIAND	
	-0.0112478	PULBOXANOS	-0.0756108
	-0.105966	PetBoykMoercoungtids	-0.000311762/
Daminsbelters	0.144226	POLTOGOGREGS2Par	-0.036353
	0,186873	TersTerler	
SanOrderPow		PersPerOccupitous	0.0557344
OtherTerCon	0,0409795	PersPerOwnDocifioup	
OwnOccHiQuart		PersTerfientOcclicus	
OwnOccLowQuart		PopDena	0.0108191
OwnDocHedVal		Pertiliato	0.0262614
FctDSorNore		FantLovQ	-0.135663
FctDormSemeState	0.00152456	DestModian	
FctEmplMaryz		TotalPctDiv	
PutEmplProfferv		agePct12t21	0.0242128
PctEmploy	0.0726016	agePtt12t29	
	-0.0310235	agePct16t24	-0.0331621
PctForeigsBors	0.4601135	agePct65cp	0.0731793
PotNousLess288	0.0123021	blackPerCap	-0.0140197
PotilogalioPhone	0.0242783	householdsize	8.0178921
PotRouscoccup		indianeercap	
POTROGROVEDOD		medPanInc	
Pottlleg	0.156562	nedinoome	0.0310747
PotInmigReold	-0.00153328		-0.0920702
POLIMAL APPROS	-0.0117715	recurken	0.039124

Use parsimony

Occam's razor / Principle of parsimony (William of Ockham \approx 1300)

Why did the tree fall?

- The wind
- Two meteorites crashed into earth. One hit the tree, the other hit the first meteorite, obliterating both and destroying the evidence

Use parsimony

Occam's razor / Principle of parsimony (William of Ockham \approx 1300)

Why did the tree fall?

- The wind
- Two meteorites crashed into earth. One hit the tree, the other hit the first meteorite, obliterating both and destroying the evidence

Given two competing explanations, the simplest one is often right.

Use parsimony

Best subset selection

• Let k be the target complexity of the model. Among all $\binom{n}{k}$ subsets of k features, find the one that best fits the model

⁷Furnival G and Wilson R (1974) Regressions by leaps and bounds. *Technometrics*

Use parsimony

Best subset selection

• Let k be the target complexity of the model. Among all $\binom{n}{k}$ subsets of k features, find the one that best fits the model

Solve

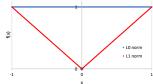
$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \sum_{i=1}^m \left(y_i - \boldsymbol{a}_i^\top \boldsymbol{x} \right)^2 + \lambda \sum_{j=1}^n x_j^2$$
s.t.
$$\sum_{j=1}^n \mathbb{1}_{\{x_j \neq 0\}} \le k$$

• Implemented⁷ in R packages for n < 30

⁷Furnival G and Wilson R (1974) Regressions by leaps and bounds. *Technometrics*

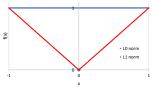
Lasso/ elastic net (Tibshirani 1996, Zou and Hastie 2005)

• The best convex underestimator of the " ℓ_0 -norm" function $f(x) = \mathbbm{1}_{\{x \neq 0\}}$ on $-1 \le x \le 1$ is the ℓ_1 -norm |x|



Lasso/ elastic net (Tibshirani 1996, Zou and Hastie 2005)

• The best convex underestimator of the " ℓ_0 -norm" function $f(x) = \mathbb{1}_{\{x \neq 0\}}$ on $-1 \le x \le 1$ is the ℓ_1 -norm |x|



Solve

$$\min_{\mathbf{x}\in\mathbb{R}^n} \sum_{i=1}^m \left(y_i - \mathbf{a}_i^\top \mathbf{x} \right)^2 + \lambda \sum_{j=1}^n x_j^2$$

s.t.
$$\sum_{j=1}^n |x_j| \le \kappa$$

where κ is a parameter (to be tuned) controlling sparsity vs accuracy

\equiv Google S	cholar				Q	0
	Robert Tibshirani		FOLLOW	Cited by	VIE	EW ALL
89	Professor of Biomedical Data Sciences, and of Statistics, Stanford				All Sind	ce 2014
EMA	<u>University</u> Verified email at stanford.edu - <u>Homepage</u>			126679		
	Statistics Applied Statistics Statistical learning	machine learning data s	cience	h-index i10-index	143 382	96 301
TITLE		CITED BY	YEAR			28000
IIILE		CITED BY	TEAK			21000
Unsupervised learning 42343 2001 T Haskie, R Tibshirani, J Friedman The elements of statistical learning, 485-585		2009	11111		14000	
An introduction to B Efron, RJ Tibshirar CRC press		39319	1994			7000
Regression shrin	kage and selection via the lasso	26819	1996	2012 2013 2014 2015 20	16 2017 2018 201	9
R Tibshirani Journal of the Royal	Statistical Society. Series B (Methodological), 267-288			Co-authors	VIE	EW ALL
Generalized addi TJ Hastie Statistical models in 3		16171	2017	Trevor Hastie Professor of Sta	atistics, Stanford	>
Generalized Add TJ Hastie, RJ Tibshir CRC Press		16171	* 1990	B Efron Professor of star	tistics, Stanford	>
01011055				Jerome Friedma	an	>

-

Relaxations

≡ Google S	cholar					۹ 🙆
April	Albert Einstein	F	OLLOW	Cited by		VIEW ALL
Institute of Advanced Studies, Princeton No verified email Physics				Citations h-index i10-index	All 124162 113 370	Since 2014 33880 64 206
TITLE		CITED BY	YEAR	-	- 1 -	8000
A Einstein, B Podolsk	Can quantum-mechanical description of physical reality be considered complete? A Einstein, B Podolsky, N Rosen Physical review 47 (10), 777		1935	111	ш	4000
Uber einen die Er Gesichtpunkt A Einstein Ann. Phys. 17, 132-1	zeugung und Verwandlung des Lichtes betreffenden heurischer	11362	1905	2012 2013 2014	2015 2016 2017 2	2000 018 2019 0
	t of small particles suspended in stationary liquids required by etic theory of heat 7, 549-560	9690 *	1905			
Zur Elektrodynam A Einstein	nik bewegter Körper	5504	r			
Sitzungsber. K A Einstein Preuss. Akad. Wiss.,	Phys. Math. Kl 3, 18	4950 *	1925			
Graviton Mass an A Einstein Ann Physik 35, 898	d Inertia Mass	4814	1911			

Lasso in action with the "Communities and crime" dataset (n = 100)

Solution metrics Optimal solution found in milliseconds

Solutions Large κ ($R^2 = 0.81$)

HousVacant	0.237656
LemasPctOfficDrugUn MalePctDivorce	0.0260223
NumStreet	0.14165
PctHousNoPhone	0.0266273
PctIlleg	0.311418
PctPersDenseHous	0.197454
PctVacantBoarded	0.0405917
PopDens	0.0193849
pctWPubAsst	0.0445904
racepctblack	0.186306

Small κ ($R^2 = 0.25$)

LandArea	0.121248
NumIlleg	0.685344
NumImmig	0.183812
PctPersDenseHous	0.000258902

Mixed-integer optimization 89

- Best subset selection can be formulated as a MIO
- Letting binary variable $z_j = 1$ iff feature j is included, solve

$$\min_{\mathbf{x}\in\mathbb{R}^{n},\mathbf{z}\in\{0,1\}^{n}} \sum_{i=1}^{m} \left(y_{i} - \mathbf{a}_{i}^{\top}\mathbf{x}\right)^{2} + \lambda \sum_{j=1}^{n} x_{j}^{2}$$

s.t.
$$\sum_{j=1}^{n} z_{j} \leq k$$
$$-Mz_{j} \leq x_{j} \leq Mz_{j} \quad \forall j = 1, \dots, n$$

 $^{^{8}}$ Bertsimas D et al (2016) Best subset selection via a modern optimization lens. The Annals of Statistics

⁹Cozad A et al (2014) Learning surrogate models for simulation-based optimization. *AIChE*.

MIO in action with the "Communities and crime" dataset (n = 100)

Solution
$$(R^2 = 0.81)$$

HousVacant 0.250896 MalePctDivorce 0.135992 PctIlleg 0.524062 PctPersDenseHous 0.175159

MIO in action with the "Communities and crime" dataset (n = 100)

Solution
$$(R^2 = 0.81)$$

HousVacant 0.250896 MalePctDivorce 0.135992 PctIlleg 0.524062 PctPersDenseHous 0.175159

Solution metrics 20 hours to optimality, millions of nodes (Gurobi, 2022)

Is best subset selection really worth it?10

- Best subset is slow
- Lasso is better in some situations, and can be

improved otherwise

Of course!¹¹?

- Solution times are appropriate in many cases
- Lasso is better in very low SNR regimes, and best

subset can be adapted

Both methods have merits!¹²?

¹⁰Hastie T, Tibshirani R, Tibshirani R (2020) Best subset, forward stepwise or Lasso? Analysis and recommendations based on extensive comparisons. *Statistical Science*

 $^{^{11}}$ Mazumder R, Radchenko P, Dedieu A (2023) Subset selection with shrinkage: Sparse linear modeling when the SNR is low. *Operations Research*

¹²Chen Y, Taeb A, Bühlmann P (2020) A look at robustness and stability of ℓ_1 - versus ℓ_0 -regularization: Discussion of papers by Bertsimas et al. and Hastie et al. Statistical Science

How good is the convex relaxation? $\ \ z \in \{0,1\}^n
ightarrow \mathbf{0} \leq \mathbf{z} \leq \mathbf{1}$

$$\min_{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{0} \leq \mathbf{z} \leq \mathbf{1}} \sum_{i=1}^{m} \left(y_{i} - \mathbf{a}_{i}^{\top} \mathbf{x} \right)^{2} + \lambda \sum_{j=1}^{n} x_{j}^{2}$$

s.t.
$$\sum_{j=1}^{n} z_{j} \leq k$$
$$- M z_{j} \leq x_{j} \leq M z_{j} \qquad \forall j = 1, \dots, n$$

How good is the convex relaxation? $\ \ z \in \{0,1\}^n
ightarrow \mathbf{0} \leq \mathbf{z} \leq \mathbf{1}$

$$\min_{\mathbf{x}\in\mathbb{R}^{n},\mathbf{0}\leq\mathbf{z}\leq\mathbf{1}} \sum_{i=1}^{m} \left(y_{i}-\mathbf{a}_{i}^{\top}\mathbf{x}\right)^{2} + \lambda \sum_{j=1}^{n} x_{j}^{2}$$

s.t.
$$\sum_{j=1}^{n} z_{j} \leq k$$
$$-Mz_{j} \leq x_{j} \leq Mz_{j} \qquad \forall j = 1, \dots, n$$

In an optimal solution, $z_j^* = |x_j|/M$ \implies The continuous relaxation is in fact lasso!

How good is the convex relaxation? $\ \ z \in \{0,1\}^n
ightarrow \mathbf{0} \leq \mathbf{z} \leq \mathbf{1}$

$$\min_{\mathbf{x}\in\mathbb{R}^{n},\mathbf{0}\leq\mathbf{z}\leq\mathbf{1}} \sum_{i=1}^{m} \left(y_{i}-\mathbf{a}_{i}^{\top}\mathbf{x}\right)^{2} + \lambda \sum_{j=1}^{n} x_{j}^{2}$$

s.t.
$$\sum_{j=1}^{n} z_{j} \leq k$$
$$-Mz_{j} \leq x_{j} \leq Mz_{j} \qquad \forall j = 1, \dots, n$$

In an optimal solution, $z_j^* = |x_j|/M$ \implies The continuous relaxation is in fact lasso!

Since lasso is not a good approximation, this formulation is slow...

Improve the convex relaxation Need to exploit nonlinearities

$$\min_{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}, \mathbf{t} \in \mathbb{R}^{n}_{+}} \sum_{i=1}^{m} \left(y_{i} - \mathbf{a}_{i}^{\top} \mathbf{x} \right)^{2} + \lambda \sum_{j=1}^{n} t_{j}$$

s.t. $x_{j}^{2} \leq t_{j} \quad \forall j = 1, \dots, n$
 $\sum_{j=1}^{n} z_{j} \leq k$
 $- Mz_{j} \leq x_{j} \leq Mz_{j} \quad \forall j = 1, \dots, n$

Improve the convex relaxation Need to exploit nonlinearities

$$\min_{\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{z} \in \{0,1\}^{n}, \boldsymbol{t} \in \mathbb{R}^{n}_{+}} \sum_{i=1}^{m} \left(y_{i} - \boldsymbol{a}_{i}^{\top} \boldsymbol{x} \right)^{2} + \lambda \sum_{j=1}^{n} t_{j}$$

s.t. $x_{j}^{2} \leq t_{j} \quad \forall j = 1, \dots, n$
$$\sum_{j=1}^{n} z_{j} \leq k$$

 $-Mz_{j} \leq x_{j} \leq Mz_{j} \quad \forall j = 1, \dots, n$

What is the convex hull of

$$S = \{x \in \mathbb{R}, z \in \{0, 1\}, t \in \mathbb{R} : x^2 \le t, x(1 - z) = 0\}$$
?

$$S = \underbrace{\{(x, z, t) \in \mathbb{R}^3 : 0 \le t, x = z = 0\}}_{S_1} \cup \underbrace{\{(x, z, t) \in \mathbb{R}^3 : x^2 \le t, z = 1\}}_{S_2}?$$

$$\begin{split} & x = \lambda_1 x_1 + \lambda_2 x_2, \ z = \lambda_1 z_1 + \lambda_2 z_2, \ t = \lambda_1 t_1 + \lambda_2 t_2 \\ & \lambda_1 + \lambda_2 = 1, \ \lambda_1 \ge 0, \ \lambda_2 \ge 0 \\ & (x_1, z_1, t_1) \in S_1 \Leftrightarrow x_1 = z_1 = 0, t_1 \ge 0 \\ & (x_2, z_2, t_2) \in S_2 \Leftrightarrow x_2^2 \le t_2, z_2 = 1 \end{split}$$

$$S = \underbrace{\{(x, z, t) \in \mathbb{R}^3 : 0 \le t, x = z = 0\}}_{S_1} \cup \underbrace{\{(x, z, t) \in \mathbb{R}^3 : x^2 \le t, z = 1\}}_{S_2}?$$

 $(x, z, t) \in \operatorname{conv}(S)$ if and only $\exists (x_i, z_i, t_i) \in S_i$ and $\lambda_i \in \mathbb{R}^i$ such that

$$egin{aligned} &x=\lambda_1x_1+\lambda_2x_2,\;z=\lambda_1z_1+\lambda_2z_2,\;t=\lambda_1t_1+\lambda_2t_2\ &\lambda_1+\lambda_2=1,\;\lambda_1\geq 0,\;\lambda_2\geq 0\ &(x_1,z_1,t_1)\in S_1\Leftrightarrow x_1=z_1=0,t_1\geq 0\ &(x_2,z_2,t_2)\in S_2\Leftrightarrow x_2^2\leq t_2,z_2=1 \end{aligned}$$

Change of variables: $\tilde{x}_i = x_i \lambda_i$, $\tilde{z}_i = z_i \lambda_i$, $\tilde{t}_i = t_i \lambda_i$

Convexification for MINLO in sparse regression

Improving the formulation

$$S = \underbrace{\{(x, z, t) \in \mathbb{R}^3 : 0 \le t, x = z = 0\}}_{S_1} \cup \underbrace{\{(x, z, t) \in \mathbb{R}^3 : x^2 \le t, z = 1\}}_{S_2}?$$

 $(x, z, t) \in \text{conv}(S)$ if and only $\exists (x_i, z_i, t_i) \in S_i$ and $\lambda_i \in \mathbb{R}^i$ such that

$$\begin{aligned} x &= \tilde{x}_1 + \tilde{x}_2, \ z = \tilde{z}_1 + \tilde{z}_2, \ t = \tilde{t}_1 + \tilde{t}_2 \\ \lambda_1 + \lambda_2 &= 1, \ \lambda_1 \ge 0, \ \lambda_2 \ge 0 \\ (x_1, z_1, t_1) \in S_1 \Leftrightarrow \tilde{x}_1 = \tilde{z}_1 = 0, \ \tilde{t}_1 \ge 0 \\ (x_2, z_2, t_2) \in S_2 \Leftrightarrow (\tilde{x}_2/\lambda_2)^2 \le \tilde{t}_2/\lambda_2, \ \tilde{z}_2/\lambda_2 = 1 \end{aligned}$$

Change of variables: $\tilde{x}_i = x_i \lambda_i$, $\tilde{z}_i = z_i \lambda_i$, $\tilde{t}_i = t_i \lambda_i$

$$S = \underbrace{\{(x, z, t) \in \mathbb{R}^3 : 0 \le t, x = z = 0\}}_{S_1} \cup \underbrace{\{(x, z, t) \in \mathbb{R}^3 : x^2 \le t, z = 1\}}_{S_2}?$$

 $(x, z, t) \in \operatorname{conv}(S)$ if and only $\exists (x_i, z_i, t_i) \in S_i$ and $\lambda_i \in \mathbb{R}^i$ such that

$$\begin{split} & x = \tilde{x}_1 + \tilde{x}_2, \ z = \tilde{z}_1 + \tilde{z}_2, \ t = \tilde{t}_1 + \tilde{t}_2 \\ & \lambda_1 + \lambda_2 = 1, \ \lambda_1 \ge 0, \ \lambda_2 \ge 0 \\ & (\tilde{x}_1, \tilde{z}_1, \tilde{t}_1) \in \lambda_1 S_1 \Leftrightarrow \tilde{x}_1 = \tilde{z}_1 = 0, \tilde{t}_1 \ge 0 \\ & (\tilde{x}_2, \tilde{z}_2, \tilde{t}_2) \in \lambda_2 S_2 \Leftrightarrow \tilde{x}_2^2 / \lambda_2 \le \tilde{t}_2, \tilde{z}_2 = \lambda_2 \end{split}$$

Change of variables: $\tilde{x}_i = x_i \lambda_i$, $\tilde{z}_i = z_i \lambda_i$, $\tilde{t}_i = t_i \lambda_i$

$$egin{aligned} &x = ilde{x}_1 + ilde{x}_2, \; z = ilde{z}_1 + ilde{z}_2, t = ilde{t}_1 + ilde{t}_2 \\ &\lambda_1 + \lambda_2 = 1, \; \lambda_1 \ge 0, \; \lambda_2 \ge 0 \\ & ilde{x}_1 = ilde{z}_1 = 0, \; ilde{t}_1 \ge 0 \\ & ilde{x}_2^2 / \lambda_2 \le ilde{t}_2, \; ilde{z}_2 = \lambda_2 \end{aligned}$$

$$\begin{aligned} x &= \tilde{x}_1 + \tilde{x}_2, \ z = \tilde{z}_1 + \tilde{z}_2, t = \tilde{t}_1 + \tilde{t}_2 \\ \lambda_1 &+ \lambda_2 = 1, \ \lambda_1 \ge 0, \ \lambda_2 \ge 0 \\ \tilde{x}_1 &= \tilde{z}_1 = 0, \tilde{t}_1 \ge 0 \\ \tilde{x}_2^2 / \lambda_2 \le \tilde{t}_2, \ \tilde{z}_2 = \lambda_2 \end{aligned}$$

$$egin{aligned} &x= ilde{x}_2,\;z= ilde{z}_2,t= ilde{t}_1+ ilde{t}_2\ &\lambda_1+\lambda_2=1,\;\lambda_1\geq 0,\;\lambda_2\geq 0\ & ilde{t}_1\geq 0\ & ilde{x}_2^2/\lambda_2\leq ilde{t}_2,\; ilde{z}_2=\lambda_2 \end{aligned}$$

$$\begin{split} &x = \tilde{x}_2, \ z = \tilde{z}_2, t = \tilde{t}_1 + \tilde{t}_2 \\ &\lambda_1 + \lambda_2 = 1, \ \lambda_1 \ge 0, \ \lambda_2 \ge 0 \\ &\tilde{t}_1 \ge 0 \\ &\tilde{x}_2^2/\lambda_2 \le \tilde{t}_2, \ \tilde{z}_2 = \lambda_2 \end{split}$$

$$egin{aligned} &x= ilde{x}_2,\ z=\lambda_2,t= ilde{t}_1+ ilde{t}_2\ &\lambda_1+\lambda_2=1,\ &\lambda_1\geq 0,\ &\lambda_2\geq 0\ & ilde{t}_1\geq 0\ & ilde{x}_2^2/\lambda_2\leq & ilde{t}_2 \end{aligned}$$

$$\begin{aligned} \mathbf{x} &= \tilde{\mathbf{x}}_2, \ \mathbf{z} &= \lambda_2, t = \tilde{t}_1 + \tilde{t}_2 \\ \lambda_1 + \lambda_2 &= 1, \ \lambda_1 \ge 0, \ \lambda_2 \ge 0 \\ \tilde{t}_1 \ge 0 \\ \tilde{\mathbf{x}}_2^2 / \lambda_2 \le \tilde{t}_2 \end{aligned}$$

$$egin{aligned} t &= ilde{t}_1 + ilde{t}_2 \ \lambda_1 + z_2 &= 1, \ \lambda_1 \geq 0, \ z \geq 0 \ ilde{t}_1 \geq 0 \ x^2/z &\leq ilde{t}_2 \end{aligned}$$

$$egin{aligned} t &= ilde{t}_1 + ilde{t}_2 \ \lambda_1 + z_2 &= 1, \ \lambda_1 \geq 0, \ z \geq 0 \ ilde{t}_1 \geq 0 \ x^2/z &\leq ilde{t}_2 \end{aligned}$$

$$egin{aligned} t &= ilde{t}_1 + ilde{t}_2 \ z &\leq 1, \ z \geq 0 \ ilde{t}_1 &\geq 0 \ x^2/z &\leq ilde{t}_2 \end{aligned}$$

 $(x, z, t) \in \operatorname{conv}(S)$ if and only $\exists (\tilde{x}_i, \tilde{z}_i, \tilde{t}_i) \in S_i$ and $\lambda_i \in \mathbb{R}^i$ such that

 $egin{aligned} t &= ilde{t}_1 + ilde{t}_2 \ z &\leq 1, \ z \geq 0 \ ilde{t}_1 &\geq 0 \ x^2/z &\leq ilde{t}_2 \end{aligned}$

 $(x,z,t)\in \operatorname{conv}(S)$ if and only¹³ $\exists (\widetilde{x}_i,\widetilde{z}_i,\widetilde{t}_i)\in S_i$ and $\lambda_i\in \mathbb{R}^i$ such that

 $t \ge x^2/z, \ 0 \le z \le 1$

Proposition (Frangioni and Gentile 2006)

The convex hull of set

$$\mathcal{S}=ig\{x\in\mathbb{R},z\in\{0,1\},t\in\mathbb{R}:x^2\leq t,x(1-z)=0ig\}$$

is

$$\mathit{conv}(S) = \left\{ (x, z, t) \in \mathbb{R}^3 : x^2 \le tz, \ 0 \le z \le 1 \right\}$$

¹³Frangioni A and Gentile C (2006) Perspective cuts for a class of convex 0-1 mixed-integer programs. *Mathematical Programming*

Improve the convex relaxation ¹⁴¹⁵

$$\min_{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}, \mathbf{t} \in \mathbb{R}^{n}_{+}} \sum_{i=1}^{m} \left(y_{i} - \mathbf{a}_{i}^{\top} \mathbf{x} \right)^{2} + \lambda \sum_{j=1}^{n} t_{j}$$

s.t. $x_{j}^{2} \leq t_{j} \qquad \forall j = 1, \dots, n$
 $\sum_{j=1}^{n} z_{j} \leq k$
 $-Mz_{j} \leq x_{j} \leq Mz_{j} \qquad \forall j = 1, \dots, n$

¹⁴Dong H et al (2018) Regularization vs relaxation: A convexification perspective of statistical variable selection. *Optimization Online*

 15 Xie W and Deng X (2020) Scalable algorithms for the sparse ridge regression. *SIAM Journal on Optimization*

Improve the convex relaxation ¹⁴¹⁵

$$\min_{\mathbf{x}\in\mathbb{R}^{n},\mathbf{z}\in\{0,1\}^{n},\mathbf{t}\in\mathbb{R}^{n}_{+}}\sum_{i=1}^{m}\left(y_{i}-\mathbf{a}_{i}^{\top}\mathbf{x}\right)^{2}+\lambda\sum_{j=1}^{n}t_{j}$$

s.t. $x_{j}^{2}\leq t_{j}z_{j}$ $\forall j=1,\ldots,n$
 $\sum_{j=1}^{n}z_{j}\leq k$
 $-Mz_{j}\leq x_{j}\leq Mz_{j}$ $\forall j=1,\ldots,n$

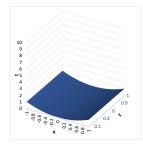
The perspective reformulation! (Disjunctive programming)

¹⁴Dong H et al (2018) Regularization vs relaxation: A convexification perspective of statistical variable selection. *Optimization Online*

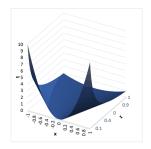
¹⁵Xie W and Deng X (2020) Scalable algorithms for the sparse ridge regression. *SIAM Journal on Optimization*

Constraint $tz \ge x^2$ with $t, z \ge 0$ is convex and SOCP representable

It represents a substantial improvement in the relaxation quality



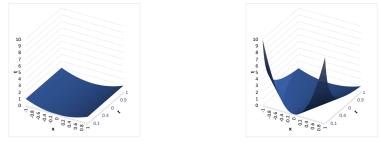
Graph of $t = x^2$ (big-M)



Graph of
$$t = x^2/z$$

Constraint $tz \ge x^2$ with $t, z \ge 0$ is convex and SOCP representable

It represents a substantial improvement in the relaxation quality



Graph of $t = x^2$ (big-M) Graph of $t = x^2/z$

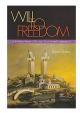
Solution times in "Communities and crime": $2s (15,000 \times speedup)$

Disjunctive programming

Disjunctive programming was invented by Egon Balas in the 80s

```
https://www.wsj.com/articles/
```

egon-balas-jailed-and-tortured-in-romania-found-salvation-in-math-11553869800



Generalizes to nonlinear optimization¹⁶

¹⁶Ceria S and Soares J (1999) Convex programming for disjunctive convex optimization. *Mathematical Programming*

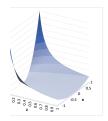
Given a convex function $f : \mathbb{R}^n \to \mathbb{R}$, consider

$$f^{\pi}(\mathbf{x},\lambda) = \begin{cases} \lambda f(\mathbf{x}/\lambda) & \text{if } \lambda > 0\\ \lim_{\lambda \to 0^{+}} \lambda f(\mathbf{x}/\lambda) & \text{if } \lambda = 0\\ +\infty & otherwise. \end{cases}$$

• f^{π} is convex and homogeneous

• If
$$f(\mathbf{x}) = a_0 + \mathbf{a}^\top \mathbf{x}$$
, then $f^{\pi}(\mathbf{x}, \lambda) = a_0 \lambda + \mathbf{a}^\top \mathbf{x}$

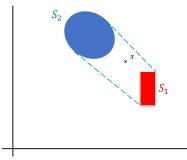
• If
$$f(x) = x^2$$
, then $f^{\pi}(x, z) = x^2/z$ with $0/0 = 0$ and $x^2/0 = +\infty$ if $x \neq 0$



For $i \in \{1, ..., k\}$, let $S_i = \{x \in \mathbb{R}^n : g_{ii}(x) \le 0, j = 1..., m\}$ convex. Then $x \in \text{cl conv}\left(\bigcup_{i=1}^{k} S_{i}\right)$ iff $\exists x^{i} \in \mathbb{R}^{n}$ and $\lambda^{i} \in \mathbb{R}_{+}$ such that $x^i \in S^{\pi}_i(\lambda) = \{x \in \mathbb{R}^n : g^{\pi}_{ii}(x,\lambda^i) \leq 0, j = 1..., m\}$ $x = \sum_{i=1}^{k} x^{i}$, and $1 = \sum_{i=1}^{k} \lambda^{i}$. S_1

For $i \in \{1, \ldots, k\}$, let $S_i = \{x \in \mathbb{R}^n : g_{ij}(x) \le 0, j = 1 \ldots, m\}$ convex. Then $x \in \mathsf{cl} \operatorname{conv} \left(\bigcup_{i=1}^k S_i\right)$ iff $\exists x^i \in \mathbb{R}^n$ and $\lambda^i \in \mathbb{R}_+$ such that

$$x^{i} \in S_{i}^{\pi}(\lambda) = \left\{ x \in \mathbb{R}^{n} : g_{ij}^{\pi}(x, \lambda^{i}) \leq 0, \ j = 1..., m \right\}$$
$$x = \sum_{i=1}^{k} x^{i}, \text{ and } 1 = \sum_{i=1}^{k} \lambda^{i}.$$



For $i \in \{1, ..., k\}$, let $S_i = \{x \in \mathbb{R}^n : g_{ij}(x) \le 0, j = 1..., m\}$ convex. Then $x \in \text{cl conv}\left(\bigcup_{i=1}^{k} S_{i}\right)$ iff $\exists x^{i} \in \mathbb{R}^{n}$ and $\lambda^{i} \in \mathbb{R}_{+}$ such that $x^i \in S^{\pi}_i(\lambda) = \{x \in \mathbb{R}^n : g^{\pi}_{ii}(x, \lambda^i) \le 0, j = 1..., m\}$ $x = \sum_{i=1}^{k} x^{i}$, and $1 = \sum_{i=1}^{k} \lambda^{i}$. S_1 * x¹

For $i \in \{1, ..., k\}$, let $S_i = \{x \in \mathbb{R}^n : g_{ij}(x) \le 0, j = 1..., m\}$ convex. Then $x \in \text{cl conv}\left(\bigcup_{i=1}^k S_i\right)$ iff $\exists x^i \in \mathbb{R}^n$ and $\lambda^i \in \mathbb{R}_+$ such that $x^i \in S_i^{\pi}(\lambda) = \{x \in \mathbb{R}^n : g_{ii}^{\pi}(x, \lambda^i) \le 0, j = 1..., m\}$ $x = \sum_{i=1}^{k} x^{i}$, and $1 = \sum_{i=1}^{k} \lambda^{i}$. S₁

Implications of disjunctive programming Given any disjunctive set, we can create an equivalent convex (conic-representable) representation by creating k copies x^i of variables x, and mk constraints $g_{ij}^{\pi}(x^i, \lambda^i) \leq 0$. In other words, formulation increases by a factor of k.

Is it useful?

Implications of disjunctive programming Given any disjunctive set, we can create an equivalent convex (conic-representable) representation by creating k copies x^i of variables x, and mk constraints $g_{ij}^{\pi}(x^i, \lambda^i) \leq 0$. In other words, formulation increases by a factor of k.

Is it useful? If used carefully

- Number of additional variables can grow exponentially
- Fourier-Motzkin elimination can be difficult in closed form
- Cuts from disjunctive programming may be hard to implement

Implementation of disjunctive programming

$$S = \bigcup_{i=1}^{\ell} \{ \boldsymbol{x} \in \mathbb{R}^n : f_i(\boldsymbol{x}) \leq 0 \}$$

Implementation 1 Add variables $\{(\mathbf{x}^i, \lambda_i) \in \mathbb{R}^{n+1}\}_{i=1}^{\ell}$ and formulate as

$$\mathbf{x} = \sum_{i=1}^{\ell} \mathbf{x}^{i}, \ 1 = \sum_{i=1}^{\ell} \lambda_{i}, \ \boldsymbol{\lambda} \ge \mathbf{0}$$
$$f_{i}^{\pi}(\mathbf{x}^{i}, \lambda_{i}) \le \mathbf{0} \quad \forall \in \{1, \dots, \ell\}$$

- Can be effective when ℓ is small (e.g., $\ell=2$)
- But number of variables and constraints may be prohibitive...

Implementation of disjunctive programming

$$S = \bigcup_{i=1}^{\ell} \{ \boldsymbol{x} \in \mathbb{R}^n : f_i(\boldsymbol{x}) \leq 0 \}$$

Implementation 2 Add linear cuts using representation

$$0 \geq \max_{\boldsymbol{\alpha} \in \mathbb{R}^{n}, \boldsymbol{\beta} \in \mathbb{R}, \boldsymbol{\gamma} \in \mathbb{R}^{\ell}_{+}} \boldsymbol{\alpha}^{\top} \boldsymbol{x} + \boldsymbol{\beta} \\ + \min_{\{(\boldsymbol{x}^{i}, \lambda_{i})\}} \left\{ -\sum_{i=1}^{\ell} \boldsymbol{\alpha}^{\top} \boldsymbol{x}^{i} - \sum_{i=1}^{\ell} \boldsymbol{\beta} \lambda_{i} + \sum_{i=1}^{\ell} \gamma_{i} f_{i}^{\pi} (\boldsymbol{x}^{i}, \lambda_{i}) \right\}$$

- Given fixed x, solve separation (max) and add linear cut
- Requires computing Fenchel conjugates (min)
- But linear cuts can be ineffective...

Implementation of disjunctive programming

$$S = \bigcup_{i=1}^{\ell} \{ \boldsymbol{x} \in \mathbb{R}^n : f_i(\boldsymbol{x}) \leq 0 \}$$

Implementation 3 Add nonlinear cuts (e.g., Fourier-Motzkin with duality)

- May achieve a good compromise between convex hull and linear cuts
- But adding nonlinear cuts in branch-and-bound is not easy
 - Not supported in OA branch-and-bound solvers
 - Could require column generation to implement effectively
 - May be of different classes than original function

What is the convex hull of

$$S = \left\{ \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{z} \in \{0,1\}^n, t \in \mathbb{R} : \left(\boldsymbol{a}^\top \boldsymbol{x} \right)^2 \leq t, \ \boldsymbol{x} \circ (\boldsymbol{1} - \boldsymbol{z})
ight\}$$

where " \circ " is the entrywise product, i.e., $\mathbf{x} \circ (\mathbf{1} - \mathbf{z}) \Leftrightarrow x_i(1 - z_i) = 0$

What is the convex hull of

$$S = \left\{ \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{z} \in \{0,1\}^n, t \in \mathbb{R} : \left(\boldsymbol{a}^\top \boldsymbol{x} \right)^2 \leq t, \ \boldsymbol{x} \circ (\boldsymbol{1} - \boldsymbol{z})
ight\}$$

where "o" is the entrywise product, i.e., $\boldsymbol{x} \circ (\boldsymbol{1} - \boldsymbol{z}) \Leftrightarrow x_i(1 - z_i) = 0$

Disjunctive programming

$$S = \bigcup_{\bar{\boldsymbol{z}} \in \{0,1\}^n} \left\{ (\boldsymbol{x}, \boldsymbol{z}, t) \in \mathbb{R}^{2n+1} : (\boldsymbol{a}^\top \boldsymbol{x})^2 \leq t, \ \boldsymbol{x} \circ (\boldsymbol{1} - \bar{\boldsymbol{z}}) = \boldsymbol{0} \right\}$$

⇒ Exponential number of variables/constraints

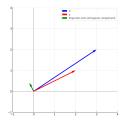
Consider optimization over set S,

$$\min_{\boldsymbol{x}\in\mathbb{R}^n,\boldsymbol{z}\in\{0,1\}^n} \boldsymbol{c}^{\top}\boldsymbol{z} + \boldsymbol{d}^{\top}\boldsymbol{x} + \left(\boldsymbol{a}^{\top}\boldsymbol{x}\right)^2 \text{ s.t. } \boldsymbol{x}\circ(1-\boldsymbol{z})$$

Consider optimization over set S,

$$\min_{\boldsymbol{x}\in\mathbb{R}^n,\boldsymbol{z}\in\{0,1\}^n} \boldsymbol{c}^{\top}\boldsymbol{z} + \boldsymbol{d}^{\top}\boldsymbol{x} + \left(\boldsymbol{a}^{\top}\boldsymbol{x}\right)^2 \text{ s.t. } \boldsymbol{x}\circ(1-\boldsymbol{z})$$

 $d \neq \mu a$ for some $\mu \in \mathbb{R} \implies \exists h \in \mathbb{R}^n$ such that $h^\top a = 0$ and $h^\top d < 0$ \implies Unbounded, letting z = 1 and $x = \gamma h$ with $\gamma \to \infty$



Consider optimization over set S,

$$\min_{\boldsymbol{x}\in\mathbb{R}^n,\boldsymbol{z}\in\{0,1\}^n} \boldsymbol{c}^{\top}\boldsymbol{z} + \boldsymbol{d}^{\top}\boldsymbol{x} + \left(\boldsymbol{a}^{\top}\boldsymbol{x}\right)^2 \text{ s.t. } \boldsymbol{x}\circ(1-\boldsymbol{z})$$

If $\boldsymbol{d} = \mu \boldsymbol{a}$, then optimization

$$\min_{\boldsymbol{x}\in\mathbb{R}^n,\boldsymbol{z}\in\{0,1\}^n,\boldsymbol{y}\in\mathbb{R}} \boldsymbol{c}^{\top}\boldsymbol{z}+\mu\boldsymbol{y}+\boldsymbol{y}^2 \text{ s.t. } \boldsymbol{y}=\boldsymbol{a}^{\top}\boldsymbol{x}, \ \boldsymbol{x}\circ(\boldsymbol{1}-\boldsymbol{z})$$

has an optimal solution with at most one non-zero x_i

 \implies All extreme points of conv(S) have at most one non-zero x_i

Given any convex function¹⁷ $f : \mathbb{R}^k \to \mathbb{R}$ and $\mathbf{A} \in \mathbb{R}^{k \times n}$, define

$$S = \{ oldsymbol{x} \in \mathbb{R}^n, oldsymbol{z} \in \{0,1\}^n, t \in \mathbb{R} : t \geq f(oldsymbol{A}oldsymbol{x}), \ oldsymbol{x} \circ (oldsymbol{1} - oldsymbol{z}) = oldsymbol{0} \}$$

Proposition (Han and Gómez 2024)

$$cl \ conv(S) = cl \ conv\left(\bigcup_{\mathcal{I} \subseteq [n]: |\mathcal{I}| \leq k} V(\mathcal{I}) \cup R\right)$$

where

$$V(\mathcal{I}) = \{ \{ \mathbf{x} \in \mathbb{R}^n, \mathbf{z} \in \{0, 1\}^n, t \in \mathbb{R} : t \ge f(\mathbf{A}\mathbf{x}), x_i = 0 \ \forall i \notin \mathcal{I}, z_i = 1 \ \forall i \in \mathcal{I} \} \}$$
$$R = \{ \{ \mathbf{x} \in \mathbb{R}^n, \mathbf{z} \in \{0, 1\}^n, t \in \mathbb{R} : t \ge 0, \ \mathbf{A}\mathbf{x} = \mathbf{0}, \ \mathbf{z} = \mathbf{1} \} \}$$

¹⁷Han S and Gómez A (2024) Compact extended formulations for low rank functions with indicators. *Mathematics of Operations Research*

Computing

$$\mathsf{cl} \, \mathsf{conv} \left(\bigcup_{\mathcal{I} \subseteq [n]: |\mathcal{I}| \leq k} V(\mathcal{I}) \cup R \right) \, \, \mathsf{vs.} \, \, \mathsf{cl} \, \, \mathsf{conv} \left(\bigcup_{\mathcal{I} \subseteq [n]} V(\mathcal{I}) \right)$$

involves $\mathcal{O}(n^k)$ vs 2^n disjunctions

Computing

$$\mathsf{cl} \, \mathsf{conv} \left(\bigcup_{\mathcal{I} \subseteq [n]: |\mathcal{I}| \leq k} V(\mathcal{I}) \cup R \right) \, \, \mathsf{vs.} \, \, \mathsf{cl} \, \, \mathsf{conv} \left(\bigcup_{\mathcal{I} \subseteq [n]} V(\mathcal{I}) \right)$$

involves $\mathcal{O}(n^k)$ vs 2^n disjunctions

For special case of k = 1,

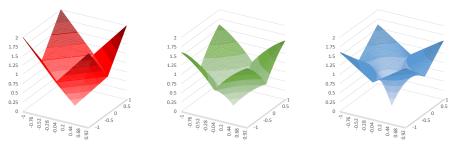
$$\mathcal{S} = \left\{ oldsymbol{x} \in \mathbb{R}^n, oldsymbol{z} \in \{0,1\}^n, t \in \mathbb{R} : (oldsymbol{a}^ op oldsymbol{x})^2 \leq t, oldsymbol{x} \circ (oldsymbol{1} - oldsymbol{z}) = oldsymbol{0}
ight\},$$

we find after Fourier-Motzkin elimination that

$$\mathsf{cl}\;\mathsf{conv}(S) = \left\{ (\mathbf{x}, \mathbf{z}, t) \in \mathbb{R}^{2n+1} : (\mathbf{a}^{\top}\mathbf{x})^2 / \min\{\mathbf{1}, \mathbf{1}^{\top}\mathbf{z}\} \le t, \; \mathbf{0} \le \mathbf{z} \le \mathbf{1} \right\}$$

Rank-one convexification in sparse regression

Can be interpreted as strong regularization¹⁸



Lasso as regularization

Perspective as regularization

Rank-one as regularization

- In tall instances ($n \ll m$), solution from relaxation is integral in practice
- But relaxation is more sophisticated (SOCP \rightarrow SDP)

¹⁸Atamtürk A and Gómez A (2025) Rank-one convexifications for sparse regression. *Journal of Machine Learning Research.*

Full implementation

Tailored branch-and-bound algorithm based on perspective relaxation¹⁹

- Project out unnecessary variables
- Coordinate descent to solve relaxations
- Active sets
- Dual bounds
- Strong branching

¹⁹Hazimeh H et al (2022) Sparse regression at scale: Branch-and-bound rooted in first-order optimization. *Mathematical Programming*

Full implementation

Tailored branch-and-bound algorithm based on perspective relaxation¹⁹

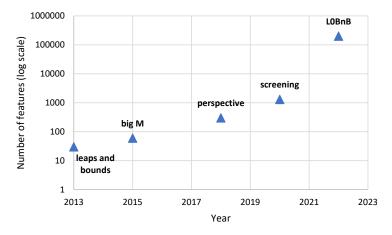
- Project out unnecessary variables
- Coordinate descent to solve relaxations
- Active sets
- Dual bounds
- Strong branching

р	L0BnB	GRB	MSK	B
10 ³	0.7	70	92	(4%)
10 ⁴	3	(15%)	1697	_
10 ⁵	34	-	-	-
10 ⁶	1112	_	_	_

Time comparison (in seconds) with Gurobi, Mosek and Baron

¹⁹Hazimeh H et al (2022) Sparse regression at scale: Branch-and-bound rooted in first-order optimization. *Mathematical Programming*

The journey so far...



Dimension of problems that can be comfortably solved

Conclusion

- Convexification is harder than in MILO
- Some methods extend (less intuitive)
 - Disjunctive programming
 - RLTs
 - Lifting
- Implementation is non-trivial
- ... but it can work