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Introduction

Mixed-integer linear optimization (MILO)

min c⊤x + d
⊤
z

s.t. Ax + Gz ≤ b

x ∈ Rn, z ∈ Zm

Usually solved using branch-and-cut

NP-hard in theory, often solvable in practice
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Introduction

Mixed-integer nonlinear optimization (MINLO)

min f (x , z)

s.t. gi (x , z) ≤ 0 i = 1, . . . , p

x ∈ Rn, z ∈ Zm

Undecidable Includes Hilbert’s 10th problem

Given polynomial g , does there exist z ∈ Zn satisfying g(z) = 0

Unstructured Letting g(z) = z − z2, z ∈ {0, 1} ⇔ g(z) = 0

→ We assume continuous relaxation is “nice” (e.g., f and gi are convex)
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Introduction

Mixed-integer nonlinear optimization (MINLO)

min f (x , z)

s.t. gi (x , z) ≤ 0 i = 1, . . . , p

x ∈ Rn, z ∈ Zm

Transformations

Objective is linear: min y s.t. f (x , z) ≤ y

Single constraint: g(x , z) ≤ 0 with g(x , z) = maxi gi (x , z)

Unconstrained: F (x , z) =

f (x , z) if g(x , z) ≤ 0

∞ otherwise
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Introduction

Current “state-of-the-art” for MINLO

Much less understood and mature than MILOs

Concepts like number of variables/constraints are “uninformative”

Most solvers and researchers are focused elsewhere

Unlike MILOs, most of the heavy-lifting is left to the user
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Branch and bound Branch and bound for MILO

Branch-and-cut for MILO

Discrete feasible region
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Branch and bound Branch and bound for MILO

Branch-and-cut for MILO

Linear programming relaxation
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Branch and bound Branch and bound for MILO

Branch-and-cut for MILO

 

Solve (extreme point solution)
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Branch and bound Branch and bound for MILO

Branch-and-cut for MILO

Improve relaxation (cutting plane)
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Branch and bound Branch and bound for MILO

Branch-and-cut for MILO

 

Solve (dual simplex)
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Branch and bound Branch and bound for MILO

Branch-and-cut for MILO

𝑧𝑖 ≤ 0 𝑧𝑖 ≥ 1

 

Branch and resolve (dual simplex with two independent subproblems)
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Branch and bound Branch and bound for MILO

Branch-and-cut for MILO

Algorithm To solve a mixed-integer linear program

Start with a linear relaxation

Dynamically refine using cutting planes

Branch when needed

Reoptimize using the simplex method

When upper bound (best solution) = lower bound (relaxation), stop

Other techniques

Heuristics, often based on rounding solutions from linear relaxations
Presolve, to improve the initial linear relaxation

Algorithms revolve around deriving and exploiting linear relaxations
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Branch and bound Branch and bound for MINLO

Branch-and-cut for MINLO

The same algorithm works!

...but how to solve the continuous relaxations?

Second order methods

Hard to warm start (after branching or cuts)

Memory intensive

→ Adds up when # nodes > 106

First order methods

May struggle in heavily constrained problems

High-quality solutions difficult to obtain

→ Numerical precision can be an issue
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Branch and bound Branch and bound for MINLO

Branch-and-cut for MINLO

Numerical precision is a very real issue in MINLO
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Branch and bound Branch and bound for MINLO

Portfolio optimization

Given potential investments {1, . . . , n}, find a small
portfolio maximizing return and minimizing risk

Decision variables x ∈ Rn, where xi = % invested in security i

Return µ ∈ Rn, where µi = expected profit of investment i

→ Total return: µ⊤
x

Risk Σ ∈ Rn×n, where Σij = covariance of returns from i and j

→ Variance of portfolio: x⊤Σx

Size # of nonzero elements of x is small
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Branch and bound Branch and bound for MINLO

Portfolio optimization

max
x ,z

µ⊤
x

s.t. x⊤Σx ≤ α

1⊤x = 1

0 ≤ x ≤ z

1⊤z ≤ k

x ∈ Rn, z ∈ {0, 1}n

min
x ,z

x
⊤Σx

s.t. µ⊤
x ≥ β

1⊤x = 1

0 ≤ x ≤ z

1⊤z ≤ k

x ∈ Rn, z ∈ {0, 1}n

Which formulation is preferable?
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Branch and bound Branch and bound for MINLO

Branch-and-cut for MIQO

min f (x , z)

s.t. Ax + Gz ≤ b

x ∈ Rn, z ∈ Zm

where f is quadratic

Continuous relaxations can be solved via the simplex method12

Keeping quadratic terms in the objective seems to help in MINLO

1Wolfe P (1959) The Simplex method for quadratic programming. Econometrica
2Van de Panne C and Whinston A (1964) Simplicial methods for quadratic

programming. Naval Research Logistics
17



Branch and bound Branch and bound for MINLO

Linear outer approximations

Consider constraint f (x) ≤ t

Given x̄ , can be relaxed as f (x̄) +∇f (x̄)⊤(x − x̄) ≤ t

This process can be repeated for different support points
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Branch and bound Branch and bound for MINLO

Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?

Assume UB=100

Construct an initial linear OA

Branching, pruning by
bound/infeasibility as usual

Integer nodes might be
infeasible

Incumbents obj values need to
be handled carefully

No pruning at integer nodes

85

Init. OA

How to best construct linear outer approximations?
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Branch and bound Branch and bound for MINLO

Constructing effective linear outer approximations

Assume support points {x̄ j}rj=1 and approximate3

f (x) =
n∑

i=1

hi (xi )?

Direct Add r linear inequalities

f (x) ≥ f (x̄ j ) +∇f (x̄ j )⊤(x − x̄
j ), ∀j = 1, . . . , r

Extended Add n variables and nr linear inequalities

f (x) ≥
n∑

i=1

yi

yi ≥ hi (x̄
j
i ) + h′i (x̄

j
i )(x

j
i − x̄ ji ), ∀i = 1, . . . , n, j = 1, . . . , r

3Tawarmalani M and Sahinidis N (2005) A polyhedral branch-and-cut approach to
global optimization. Mathematical Programming
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Branch and bound Branch and bound for MINLO

Constructing effective linear outer approximations

Example Outer approximate function

f (x) = |x1|+ |x2|+ |x3|+ |x4|

Direct Add 2n = 16 linear inequalities

f (x) ≥ x1 + x2 + x3 + x4, f (x) ≥ x1 + x2 + x3 − x4, f (x) ≥ x1 + x2 − x3 + x4

f (x) ≥ x1 + x2 − x3 − x4, f (x) ≥ x1 − x2 + x3 + x4, f (x) ≥ x1 − x2 + x3 − x4

...

Extended Add n = 4 variables and 2n = 8 linear inequalities

f (x) ≥
n∑

i=1

yi

yi ≥ xi , yi ≥ −xi i = 1, . . . , 4
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Branch and bound Branch and bound for MINLO

Constructing effective linear outer approximations

Proposition (Tawarmalani and Sahinidis 2005)

For separable functions, the extended formulation with support points
{x̄ j}rj=1 is equivalent to the direct linear outer approximation supported at

every x such that for every i ∈ [n] there exists j ∈ [r ] such that xi = x̄ ji .

Polynomial extended formulations ⇔ Exponential direct OA

Linear ineqs in extended space ⇔ Nonlinear ineqs in original space
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Branch and bound Branch and bound for MINLO

Outer approximations of nonlinear functions?

Quadratic functions

f (x) = 5x21 + 4x22 + 9x23 + 4x1x2 + 6x1x3 + 12x2x3

f (x) = (x1 + 2x2 + 3x3)
2 + 4x21

f (x) = x24 + 4x21 with x4 = x1 + 2x2 + 3x3

Any convex quadratic function of rank k can be written as a separable
function with k additional variables

→ Cholesky decomposition, eigendecomposition...
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Branch and bound Branch and bound for MINLO

Outer approximations of nonlinear functions?

Conic quadratic functions 4 (Handling the Lorentz cone)

x0 ≥

√√√√ n∑
i=1

x2
i

⇔ x2
0 ≥

n∑
i=1

x2
i and x0 ≥ 0

⇔ x0 ≥
n∑

i=1

x2
i /x0 and x0 ≥ 0

⇔ x0 ≥
n∑

i=1

yi and x0 ≥ 0, yi ≥ x2
i /x0, ∀i ∈ [n]

20x speedup when first implemented

4Vielma JP et al (2017) Extended formulations in mixed-integer conic quadratic
programming. Mathematical Programming Computation
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Branch and bound Branch and bound for MINLO

Summary

Lack of dual simplex hampers algorithms

Several approach exist in the literature 5

Several popular approaches rely on linear outer approximations

Effective implementations: integrated with branch-and-bound, calls to
interior point method, addition of variables, reformulations...

In practice, varying degrees of success

5Kronqvist J et al (2019) A review and comparison of solvers for convex MINLP.
Optimization and Engineering
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Convexification Convexification for MILO

Convex hull

Definition

Given a set X ⊆ Rn, the convex hull of X , denoted as conv(X ), is

The smallest convex set containing X

The set of all convex combinations of points in X .

26



Convexification Convexification for MILO

Convex optimization

Consider the optimization min
x∈X

a
⊤
x

Proposition

If set X is convex, then any local minimum is a global minimum.

Intuition: Optimization over set X is “easy” under convexity

Proposition

The optimization problem is equivalent to

min
x∈conv(X )

a
⊤
x ,

i.e., there exist a solution that is optimal for both.

Intuition: Any optimization problem can be reduced to a convex problem
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Convexification Convexification for MILO

Convexification in mixed-integer linear optimization

x + y + z ≤ 4

0 ≤ x ≤ 3

0 ≤ y ≤ 3

0 ≤ z ≤ 2, z ∈ Z

What is the convex hull?

28
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Convexification Convexification for MILO

Convexification in mixed-integer linear optimization

Proposition (Meyer 1974)

The convex hull of set {x ∈ Rn, z ∈ Zm : Ax + Gz ≤ b} is a polyhedron.

Linear relaxation Convex hull

Instead of computing exact convex hulls, convexifications are dynamically
added to branch-and-bound algorithms via cutting planes

29
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Convexification Convexification for MILO

Convexification in mixed-integer nonlinear optimization

x2 + y2 + z ≤ 4

0 ≤ x ≤ 3

0 ≤ y ≤ 3

0 ≤ z ≤ 2, z ∈ Z

What is the convex hull? How to implement in practice?

30



Convexification Convexification for MINLO in sparse regression
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3 Convexification
Convexification for MILO
Convexification for MINLO in sparse regression
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Least squares regression

Consider dataset6 {(xi , yi )}mi=1 where xi ∈ Rn

Least squares with ridge regularization

min
x∈Rn

m∑
i=1

(yi − a
⊤
i x)

2 + λ

n∑
j=1

x2j

for some λ ≥ 0

6Hoerl AE and Kennard RW (1970) Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics
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Shortcomings of ordinary least squares

Prone to overfitting

Can fail to make meaningful predictions out-of-sample

32
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Shortcomings of ordinary least squares

In some cases, interpretability is far more important than accuracy
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Linear regression

Least squares in action with the “Communities and crime” dataset

Data with socio-economic data, law enforcement data and crime data
(US census, LEMAS survey and FBI)

n = 100 features, m = 1993 cities

Solution metrics Optimal solution found in milliseconds, R2 = 0.84

Solution

34

https://archive.ics.uci.edu/dataset/183/communities+and+crime


Convexification Convexification for MINLO in sparse regression

Linear regression

Least squares in action with the “Communities and crime” dataset

Data with socio-economic data, law enforcement data and crime data
(US census, LEMAS survey and FBI)

n = 100 features, m = 1993 cities

Solution metrics Optimal solution found in milliseconds, R2 = 0.84

Solution

34

https://archive.ics.uci.edu/dataset/183/communities+and+crime


Convexification Convexification for MINLO in sparse regression

Linear regression

Least squares in action with the “Communities and crime” dataset

Data with socio-economic data, law enforcement data and crime data
(US census, LEMAS survey and FBI)

n = 100 features, m = 1993 cities

Solution metrics Optimal solution found in milliseconds, R2 = 0.84

Solution

34

https://archive.ics.uci.edu/dataset/183/communities+and+crime


Convexification Convexification for MINLO in sparse regression

Use parsimony

Occam’s razor / Principle of parsimony (William of Ockham ≈ 1300)

Why did the tree fall?

The wind

Two meteorites crashed into
earth. One hit the tree, the
other hit the first meteorite,
obliterating both and
destroying the evidence

Given two competing explanations, the simplest one is often right.
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Use parsimony

Best subset selection

Let k be the target complexity of the model. Among all
(n
k

)
subsets

of k features, find the one that best fits the model

Solve

min
x∈Rn

m∑
i=1

(
yi − a

⊤
i x

)2
+ λ

n∑
j=1

x2j

s.t.
n∑

j=1

1{xj ̸=0} ≤ k

Implemented7 in R packages for n < 30

7Furnival G and Wilson R (1974) Regressions by leaps and bounds. Technometrics
36
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Relaxations

Lasso/ elastic net (Tibshirani 1996, Zou and Hastie 2005)

The best convex underestimator of the “ℓ0-norm” function
f (x) = 1{x ̸=0} on −1 ≤ x ≤ 1 is the ℓ1-norm |x |

0

1

-1 0 1

f(
x)

x

L0 norm

L1 norm

Solve

min
x∈Rn

m∑
i=1

(
yi − a

⊤
i x

)2
+ λ

n∑
j=1

x2j

s.t.
n∑

j=1

|xj | ≤ κ

where κ is a parameter (to be tuned) controlling sparsity vs accuracy
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Relaxations
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Relaxations
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Relaxations

Lasso in action with the “Communities and crime” dataset (n = 100)

Solution metrics Optimal solution found in milliseconds

Solutions
Large κ (R2 = 0.81) Small κ (R2 = 0.25)

40
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Mixed-integer optimization

Mixed-integer optimization 89

Best subset selection can be formulated as a MIO

Letting binary variable zj = 1 iff feature j is included, solve

min
x∈Rn,z∈{0,1}n

m∑
i=1

(
yi − a

⊤
i x

)2
+ λ

n∑
j=1

x2j

s.t.
n∑

j=1

zj ≤ k

−Mzj ≤ xj ≤ Mzj ∀j = 1, . . . , n

8Bertsimas D et al (2016) Best subset selection via a modern optimization lens. The
Annals of Statistics

9Cozad A et al (2014) Learning surrogate models for simulation-based optimization.
AIChE.
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Mixed-integer optimization

MIO in action with the “Communities and crime” dataset (n = 100)

Solution (R2 = 0.81)

Solution metrics 20 hours to optimality, millions of nodes (Gurobi, 2022)

42
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Mixed-integer optimization

Is best subset selection really worth it?10

• Best subset is slow
• Lasso is better in some situations, and can be

improved otherwise

Of course!11?
• Solution times are appropriate in many cases
• Lasso is better in very low SNR regimes, and best

subset can be adapted

Both methods have merits!12?
10

Hastie T, Tibshirani R, Tibshirani R (2020) Best subset, forward stepwise or Lasso? Analysis and recommendations based
on extensive comparisons. Statistical Science

11
Mazumder R, Radchenko P, Dedieu A (2023) Subset selection with shrinkage: Sparse linear modeling when the SNR is

low. Operations Research
12

Chen Y, Taeb A, Bühlmann P (2020) A look at robustness and stability of ℓ1- versus ℓ0-regularization: Discussion of
papers by Bertsimas et al. and Hastie et al. Statistical Science
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Improving the formulation

How good is the convex relaxation? z ∈ {0, 1}n → 0 ≤ z ≤ 1

min
x∈Rn,0≤z≤1

m∑
i=1

(
yi − a

⊤
i x

)2
+ λ

n∑
j=1

x2j

s.t.
n∑

j=1

zj ≤ k

−Mzj ≤ xj ≤ Mzj ∀j = 1, . . . , n

In an optimal solution, z∗j = |xj |/M
=⇒ The continuous relaxation is in fact lasso!

Since lasso is not a good approximation, this formulation is slow...
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Improving the formulation

Improve the convex relaxation Need to exploit nonlinearities

min
x∈Rn,z∈{0,1}n,t∈Rn

+

m∑
i=1

(
yi − a

⊤
i x

)2
+ λ

n∑
j=1

tj

s.t. x2j ≤ tj ∀j = 1, . . . , n
n∑

j=1

zj ≤ k

−Mzj ≤ xj ≤ Mzj ∀j = 1, . . . , n

What is the convex hull of

S =
{
x ∈ R, z ∈ {0, 1}, t ∈ R : x2 ≤ t, x(1− z) = 0

}
?

45
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Improving the formulation

S =
{
(x , z , t) ∈ R3 : 0 ≤ t, x = z = 0

}︸ ︷︷ ︸
S1

∪
{
(x , z , t) ∈ R3 : x2 ≤ t, z = 1

}︸ ︷︷ ︸
S2

?

(x , z , t) ∈ conv(S) if and only ∃(xi , zi , ti ) ∈ Si and λi ∈ Ri such that

x = λ1x1 + λ2x2, z = λ1z1 + λ2z2, t = λ1t1 + λ2t2

λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0

(x1, z1, t1) ∈ S1 ⇔ x1 = z1 = 0, t1 ≥ 0

(x2, z2, t2) ∈ S2 ⇔ x22 ≤ t2, z2 = 1

Change of variables: x̃i = xiλi , z̃i = ziλi , t̃i = tiλi
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Improving the formulation
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Improving the formulation

(x , z , t) ∈ conv(S) if and only ∃(x̃i , z̃i , t̃i ) ∈ Si and λi ∈ Ri such that

x = x̃1 + x̃2, z = z̃1 + z̃2, t = t̃1 + t̃2

λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0

x̃1 = z̃1 = 0, t̃1 ≥ 0

x̃22/λ2 ≤ t̃2, z̃2 = λ2

Proposition (Frangioni and Gentile 2006)

The convex hull of set

S =
{
x ∈ R, z ∈ {0, 1}, t ∈ R : x2 ≤ t, x(1− z) = 0

}
is

conv(S) =
{
(x , z , t) ∈ R3 : x2 ≤ tz , 0 ≤ z ≤ 1

}
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Improving the formulation

(x , z , t) ∈ conv(S) if and only13 ∃(x̃i , z̃i , t̃i ) ∈ Si and λi ∈ Ri such that

t ≥ x2/z , 0 ≤ z ≤ 1

Proposition (Frangioni and Gentile 2006)

The convex hull of set

S =
{
x ∈ R, z ∈ {0, 1}, t ∈ R : x2 ≤ t, x(1− z) = 0

}
is

conv(S) =
{
(x , z , t) ∈ R3 : x2 ≤ tz , 0 ≤ z ≤ 1

}
13Frangioni A and Gentile C (2006) Perspective cuts for a class of convex 0-1

mixed-integer programs. Mathematical Programming
47



Convexification Convexification for MINLO in sparse regression

Improving the formulation

Improve the convex relaxation 1415

min
x∈Rn,z∈{0,1}n,t∈Rn

+

m∑
i=1

(
yi − a

⊤
i x

)2
+ λ

n∑
j=1

tj

s.t. x2j ≤ tj

zj

∀j = 1, . . . , n
n∑

j=1

zj ≤ k

−Mzj ≤ xj ≤ Mzj ∀j = 1, . . . , n

The perspective reformulation! (Disjunctive programming)

14Dong H et al (2018) Regularization vs relaxation: A convexification perspective of
statistical variable selection. Optimization Online

15Xie W and Deng X (2020) Scalable algorithms for the sparse ridge regression. SIAM
Journal on Optimization
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15Xie W and Deng X (2020) Scalable algorithms for the sparse ridge regression. SIAM

Journal on Optimization
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Improving the formulation

Constraint tz ≥ x2 with t, z ≥ 0 is convex and SOCP representable

It represents a substantial improvement in the relaxation quality
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Disjunctive programming

Disjunctive programming was invented by Egon Balas in the 80s

https://www.wsj.com/articles/

egon-balas-jailed-and-tortured-in-romania-found-salvation-in-math-11553869800

Generalizes to nonlinear optimization16

16Ceria S and Soares J (1999) Convex programming for disjunctive convex
optimization. Mathematical Programming

50

https://www.wsj.com/articles/egon-balas-jailed-and-tortured-in-romania-found-salvation-in-math-11553869800
https://www.wsj.com/articles/egon-balas-jailed-and-tortured-in-romania-found-salvation-in-math-11553869800


Convexification Convexification for MINLO in sparse regression

Disjunctive Programming

Given a convex function f : Rn → R, consider

f π(x , λ) =


λf (x/λ) if λ > 0

limλ→0+ λf (x/λ) if λ = 0

+∞ otherwise.

f π is convex and homogeneous

If f (x) = a0 + a⊤x , then
f π(x , λ) = a0λ+ a⊤x

If f (x) = x2, then f π(x , z) = x2/z with
0/0 = 0 and x2/0 = +∞ if x ̸= 0
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Disjunctive programming

For i ∈ {1, . . . , k}, let Si = {x ∈ Rn : gij(x) ≤ 0, j = 1 . . . ,m} convex.

Then x ∈ cl conv
(⋃k

i=1 Si
)
iff ∃x i ∈ Rn and λi ∈ R+ such that

x i ∈ Sπ
i (λ) =

{
x ∈ Rn : gπ

ij (x , λ
i ) ≤ 0, j = 1 . . . ,m

}
x =

k∑
i=1

x i , and 1 =
k∑

i=1

λi .

𝑆1

𝑆2
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Disjunctive programming

Implications of disjunctive programming Given any disjunctive set, we can
create an equivalent convex (conic-representable) representation by
creating k copies x i of variables x , and mk constraints gπ

ij (x
i , λi ) ≤ 0. In

other words, formulation increases by a factor of k.

Is it useful?

If used carefully

Number of additional variables can grow exponentially

Fourier–Motzkin elimination can be difficult in closed form

Cuts from disjunctive programming may be hard to implement
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Implementation of disjunctive programming

S =
ℓ⋃

i=1

{x ∈ Rn : fi (x) ≤ 0}

Implementation 1 Add variables {(x i , λi ) ∈ Rn+1}ℓi=1 and formulate as

x =
ℓ∑

i=1

x
i , 1 =

ℓ∑
i=1

λi , λ ≥ 0

f πi (x i , λi ) ≤ 0 ∀ ∈ {1, . . . , ℓ}

Can be effective when ℓ is small (e.g., ℓ = 2)

But number of variables and constraints may be prohibitive...
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Implementation of disjunctive programming

S =
ℓ⋃

i=1

{x ∈ Rn : fi (x) ≤ 0}

Implementation 2 Add linear cuts using representation

0 ≥ max
α∈Rn,β∈R,γ∈Rℓ

+

α⊤
x + β

+ min
{(x i ,λi )}

{
−

ℓ∑
i=1

α⊤
x

i −
ℓ∑

i=1

βλi +
ℓ∑

i=1

γi f
π
i (x i , λi )

}

Given fixed x , solve separation (max) and add linear cut

Requires computing Fenchel conjugates (min)

But linear cuts can be ineffective...
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Implementation of disjunctive programming

S =
ℓ⋃

i=1

{x ∈ Rn : fi (x) ≤ 0}

Implementation 3 Add nonlinear cuts (e.g., Fourier-Motzkin with duality)

May achieve a good compromise between convex hull and linear cuts

But adding nonlinear cuts in branch-and-bound is not easy

Not supported in OA branch-and-bound solvers
Could require column generation to implement effectively
May be of different classes than original function
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Low-rank functions

What is the convex hull of

S =

{
x ∈ Rn, z ∈ {0, 1}n, t ∈ R :

(
a
⊤
x

)2
≤ t, x ◦ (1− z)

}
where “◦” is the entrywise product, i.e., x ◦ (1− z) ⇔ xi (1− zi ) = 0

Disjunctive programming

S =
⋃

z̄∈{0,1}n

{
(x , z , t) ∈ R2n+1 : (a⊤x)2 ≤ t, x ◦ (1− z̄) = 0

}
=⇒ Exponential number of variables/constraints
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Low-rank functions

Consider optimization over set S ,

min
x∈Rn,z∈{0,1}n

c
⊤
z + d

⊤
x +

(
a
⊤
x

)2
s.t. x ◦ (1− z)

If d = µa, then optimization

min
x∈Rn,z∈{0,1}n,y∈R

c
⊤
z + µy + y2 s.t. y = a

⊤
x , x ◦ (1− z)

has an optimal solution with at most one non-zero xi

=⇒ All extreme points of conv(S) have at most one non-zero xi
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Low-rank functions

Consider optimization over set S ,

min
x∈Rn,z∈{0,1}n

c
⊤
z + d

⊤
x +

(
a
⊤
x

)2
s.t. x ◦ (1− z)

d ̸= µa for some µ ∈ R =⇒ ∃h ∈ Rn such that h⊤a = 0 and h⊤d < 0

=⇒ Unbounded, letting z = 1 and x = γh with γ → ∞
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Low-rank functions

Given any convex function17 f : Rk → R and A ∈ Rk×n, define

S = {x ∈ Rn, z ∈ {0, 1}n, t ∈ R : t ≥ f (Ax), x ◦ (1− z) = 0}

Proposition (Han and Gómez 2024)

cl conv(S) = cl conv

 ⋃
I⊆[n]:|I|≤k

V (I) ∪ R


where

V (I) = {{x ∈ Rn, z ∈ {0, 1}n, t ∈ R : t ≥ f (Ax), xi = 0 ∀i ̸∈ I, zi = 1 ∀i ∈ I}}
R = {{x ∈ Rn, z ∈ {0, 1}n, t ∈ R : t ≥ 0, Ax = 0, z = 1}}

17Han S and Gómez A (2024) Compact extended formulations for low rank functions
with indicators. Mathematics of Operations Research
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Low-rank functions

Computing

cl conv

 ⋃
I⊆[n]:|I|≤k

V (I) ∪ R

 vs. cl conv

 ⋃
I⊆[n]

V (I)


involves O(nk) vs 2n disjunctions

For special case of k = 1,

S =
{
x ∈ Rn, z ∈ {0, 1}n, t ∈ R : (a⊤x)2 ≤ t, x ◦ (1− z) = 0

}
,

we find after Fourier-Motzkin elimination that

cl conv(S) =
{
(x , z , t) ∈ R2n+1 : (a⊤x)2/min{1, 1⊤z} ≤ t, 0 ≤ z ≤ 1

}
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Rank-one convexification in sparse regression

Can be interpreted as strong regularization18
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Lasso as regularization
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Perspective as regularization
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Rank-one as regularization

• In tall instances (n << m), solution from relaxation is integral in practice
• But relaxation is more sophisticated (SOCP→ SDP)

18Atamtürk A and Gómez A (2025) Rank-one convexifications for sparse regression.
Journal of Machine Learning Research.
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Full implementation

Tailored branch-and-bound algorithm based on perspective relaxation19

Project out unnecessary variables

Coordinate descent to solve relaxations

Active sets

Dual bounds

Strong branching

Time comparison (in seconds) with Gurobi, Mosek and Baron

19Hazimeh H et al (2022) Sparse regression at scale: Branch-and-bound rooted in
first-order optimization. Mathematical Programming
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The journey so far...
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Conclusion

Convexification is harder than in MILO

Some methods extend (less intuitive)

Disjunctive programming
RLTs
Lifting

Implementation is non-trivial

... but it can work
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