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Mixed-integer linear optimization (MILO)

mnec' x+d'z
st. Ax+Gz<b
xeR" zezZ™

@ Usually solved using branch-and-cut

@ NP-hard in theory, often solvable in practice
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Mixed-integer nonlinear optimization (MINLO)

min f(x, z)
s.t. gi(x,z) <0 i=1,...,p
xeR" zezZ™

@ Undecidable Includes Hilbert’s 10th problem
o Given polynomial g, does there exist z € Z" satisfying g(z) =0

o Unstructured Letting g(z) =z — 22, z€{0,1} < g(z) =0

— We assume continuous relaxation is “nice” (e.g., f and g; are convex)



Mixed-integer nonlinear optimization (MINLO)
min f(x, z)

s.t. gi(x,z) <0 i=1,...,p
xeR" zeZ™

Transformations

@ Objective is linear: miny s.t. f(x,z) <y

e Single constraint: g(x,z) <0 with g(x, z) = max; gi(x, z)

f if <
@ Unconstrained: F(x,z) = (x.2) ifelx.z)<0

00 otherwise



Current “state-of-the-art” for MINLO

@ Much less understood and mature than MILOs

o Concepts like number of variables/constraints are “uninformative”

@ Most solvers and researchers are focused elsewhere

@ Unlike MILOs, most of the heavy-lifting is left to the user
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@ Branch and bound for MILO



Branch-and-cut for MILO

Discrete feasible region



Branch-and-cut for MILO

Linear programming relaxation



Branch-and-cut for MILO

Solve (extreme point solution)



Branch-and-cut for MILO

Improve relaxation (cutting plane)



Branch and bound

Branch-and-cut for MILO

Solve (dual simplex)

10



Branch and bound

Branch-and-cut for MILO

Branch and resolve (dual simplex with two independent subproblems)

11



Branch and bound for MILO
Branch-and-cut for MILO

Algorithm To solve a mixed-integer linear program
Start with a linear relaxation

Dynamically refine using cutting planes
Branch when needed

Reoptimize using the simplex method

When upper bound (best solution) = lower bound (relaxation), stop

Other techniques

e Heuristics, often based on rounding solutions from linear relaxations
o Presolve, to improve the initial linear relaxation

12



Branch and bound for MILO
Branch-and-cut for MILO

Algorithm To solve a mixed-integer linear program
Start with a linear relaxation

Dynamically refine using cutting planes
Branch when needed

Reoptimize using the simplex method

When upper bound (best solution) = lower bound (relaxation), stop

Other techniques

e Heuristics, often based on rounding solutions from linear relaxations
o Presolve, to improve the initial linear relaxation

Algorithms revolve around deriving and exploiting linear relaxations

12
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@ Branch and bound for MINLO
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Branch and bound for MINLO
Branch-and-cut for MINLO

The same algorithm works!

13



Branch and bound for MINLO
Branch-and-cut for MINLO

The same algorithm works!
...but how to solve the continuous relaxations?

Second order methods

@ Hard to warm start (after branching or cuts)
@ Memory intensive
— Adds up when # nodes > 10°

First order methods
@ May struggle in heavily constrained problems
@ High-quality solutions difficult to obtain

— Numerical precision can be an issue

13



Branch and bound for MINLO
Branch-and-cut for MINLO

Numerical precision is a very real issue in MINLO

B C:A\WINDOWS\system32\cmd.exe - run.bat

©.0029 Con 235
©.0029 ©.0029
0.18e0 ©9.0029 98.38%
0.0029 0.1800 MIRcuts: 1 959  98.37%
©0.0029 0.1800 MIRcuts: 1 987 98.37%
0.0035 .0029 16.90%
©.0029 200 0.0035 .0029 1016 16.65%
lapsed time = 1.66 sec. (3548.12 ticks, tree = ©. solutions = 2)
5 ©.0029 198 0.0035 .0029 1184 16.36%
8 0.8029 195 0.ee35 .8029 1189 16.36%
11 0.0029 [195) 0.0035 .0029 1276  16.36%
feasible solution rejected --- infeasible original model
©.0029 192 0.0035 ©.0029 13e5 16.36%
15 ©.0029 190 ©.0035 ©.0029 1400 16.36%
18 ©.0029 187 0.0035 ©.0029 1490 16.36%
21 ©.e030 185 ©.0035 ©0.0029 1583 16.36%
feasible solution rejected --- infeasible original model
22 0.0029 184 0.0035 9.0029 1616  16.36%
25 ©.0029 181 0.0035 1713 16.36%
feasible solution rejected --- infeasible model
34 ©.0029 173 0.0035 ©.0029 1981 16.36%
time = 3.25 sec. (7110.85 ticks, tree = O. MB, solutions = 2)
feasible solution rejected --- infeasible model
0.0029 165 0.ee35 2281 16.36%
feasible solution rejected infeasible original model
feasible solution rejected infeasible original model
52 ©.0029 157 0.0035 2517 16.36%
feasible solution rejected --- infeasible model
62 ©.0029 147 ©.0035 2819 16.36%
feasible solution rejected --- infeasible model




CIEUIRENN I Branch and bound for MINLO

Portfolio optimization

Given potential investments {1,..., n}, find a small
portfolio maximizing return and minimizing risk

REAL
ESTATE

@ Decision variables x € R", where x; = % invested in security i

Return @ € R", where pj = expected profit of investment /
— Total return: p T x

e Risk X € R™", where ¥ = covariance of returns from i and j
— Variance of portfolio: x T Xx

Size # of nonzero elements of x is small

15



CIEUIRENN I Branch and bound for MINLO

Portfolio optimization

max uTx min x ' Xx

X,z X,z

st.x'3x <« st.pu'x>p
1Tx=1 1Tx=1
0<x<z 0<x<z
17z<k 1Tz<k
xeR", ze{0,1}" xeR" ze{0,1}"

Which formulation is preferable?

16



Branch and bound for MINLO
Branch-and-cut for MIQO

min f(x, z)
st. Ax+Gz<b
xeR" zeZ™

where f is quadratic

Continuous relaxations can be solved via the simplex method!?

Keeping quadratic terms in the objective seems to help in MINLO

Wolfe P (1959) The Simplex method for quadratic programming. Econometrica
2Van de Panne C and Whinston A (1964) Simplicial methods for quadratic
programming. Naval Research Logistics
17



CIEUIRENN I Branch and bound for MINLO

Linear outer approximations

Consider constraint f(x) <t
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CIEUIRENN I Branch and bound for MINLO

Linear outer approximations

X Support Point (3, 2)

Consider constraint f(x) <t
Given X, can be relaxed as f(x) + Vf(x)T(x — x) < t

18



CIEUIRENN I Branch and bound for MINLO

Linear outer approximations

X Support Point (3, 2)
Support Point (5, 5)

Consider constraint f(x) <t
Given X, can be relaxed as f(x) + Vf(x)T(x — x) < t

This process can be repeated for different support points

18



CIEUIRENN I Branch and bound for MINLO

Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?

@ Assume UB=100 Init. OA
@ Construct an initial linear OA °

19



CIEUIRENN I Branch and bound for MINLO

Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?
@ Assume UB=100 Init. OA

@ Construct an initial linear OA

@ Branching, pruning by
bound/infeasibility as usual

19



CIEUIRENN I Branch and bound for MINLO

Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?
@ Assume UB=100 Init. OA

@ Construct an initial linear OA

@ Branching, pruning by
bound/infeasibility as usual

19



CIEUIRENN I Branch and bound for MINLO

Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?
@ Assume UB=100 Init. OA

@ Construct an initial linear OA

@ Branching, pruning by
bound/infeasibility as usual

19



CIEUIRENN I Branch and bound for MINLO

Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?

@ Assume UB=100 Init. OA
@ Construct an initial linear OA

@ Branching, pruning by
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@ Integer nodes might be
infeasible

Solve NLP with z fixed

Infeasible
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Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?

Assume UB:].OO Init. OA
Construct an initial linear OA

Branching, pruning by
bound/infeasibility as usual
Integer nodes might be
infeasible

Incumbents obj values need to s i s
be handled carefully Objvalss

Solve NLP with z fixed

Infeasible
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Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?

@ Assume UB=100 Init. OA
@ Construct an initial linear OA

@ Branching, pruning by
bound/infeasibility as usual

@ Integer nodes might be

infeasible
@ Incumbents obj values need to Solve NLPvith 7 fred Solve NLP with  fxed
2 4
be handled carefully Objval 99 Infeasible

2

Refine OA



CIEUIRENN I Branch and bound for MINLO

Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?

Assume UB=100
Construct an initial linear OA

Branching, pruning by
bound/infeasibility as usual

Integer nodes might be
infeasible

Incumbents obj values need to
be handled carefully

No pruning at integer nodes

Init. OA

Solve NLP with z fixed Solve NLP with z fixed

Objval 99

‘ zy < 0/
RefineOA /'

Infeasible

19



CIEUIRENN I Branch and bound for MINLO

Linear outer approximations in branch-and-bound

How to integrate in branch-and-bound?

How to best construct linear outer approximations?

Assume UB=100
Construct an initial linear OA

Branching, pruning by
bound/infeasibility as usual

Integer nodes might be
infeasible

Incumbents obj values need to
be handled carefully

No pruning at integer nodes

Solve NLP with z fixed

Objval 99

‘ zy < 0/
RefineOA /'

Init. OA

Solve NLP with z fixed

Infeasible

19



CIEUIRENN I Branch and bound for MINLO

Constructing effective linear outer approximations
Assume support points {)?j}jzl and approximate3
n
F(x)=>_ hi(x)?
i=1

Direct Add r linear inequalities

f(x)> () + V) (x—=), Vj=1,...,r

3Tawarmalani M and Sahinidis N (2005) A polyhedral branch-and-cut approach to
global optimization. Mathematical Programming

20



CIEUIRENN I Branch and bound for MINLO

Constructing effective linear outer approximations
Assume support points {)?j}jzl and approximate3

= hi(x)?
i=1

Direct Add r linear inequalities
fx) > F(&R)+VAENT(x - %), Vj=1,...,r

Extended Add n variables and nr linear inequalities

n
)2 v
i=1

vi > hi(&) + () = =), Vi=1,....n, j=1,...,r

3Tawarmalani M and Sahinidis N (2005) A polyhedral branch-and-cut approach to
global optimization. Mathematical Programming

20



CIEUIRENN I Branch and bound for MINLO

Constructing effective linear outer approximations

Example Outer approximate function

f(x) = x| + [xa| + |x3] + |xa|

21



CIEUIRENN I Branch and bound for MINLO

Constructing effective linear outer approximations

Example Outer approximate function
f(x) = bl + | + [x3] + |xa
Direct Add 2" = 16 linear inequalities

f(x) > x1 + x2 + x3 + xa, f(x)>x1+x2+x3—xa, F(X)>x1+x —x3+x4
f(x) > x1 4+ x2 — x3 — xa, fFx)>x1—x+x3+xa, f(x)>x1—x2+x3—xs

21



CIEUIRENN I Branch and bound for MINLO

Constructing effective linear outer approximations

Example Outer approximate function

f(x) = bl + | + [x3] + |xa
Direct Add 2" = 16 linear inequalities

f(x) > x1 + x2 + x3 + xa, f(x)>x1+x2+x3—xa, F(X)>x1+x —x3+x4
f(x) > x1 4+ x2 — x3 — xa, fFx)>x1—x+x3+xa, f(x)>x1—x2+x3—xs

Extended Add n = 4 variables and 2n = 8 linear inequalities

n
F(x) = v
i—1
Vi X, yi>—x i=1,...,4

21



Branch and bound Branch and bound for MINLO

Constructing effective linear outer approximations

Proposition (Tawarmalani and Sahinidis 2005)

For separable functions, the extended formulation with support points
{x }szl is equivalent to the direct linear outer approximation supported at

every x such that for every i € [n] there exists j € [r] such that x; = X/.

@ Polynomial extended formulations < Exponential direct OA

@ Linear inegs in extended space < Nonlinear ineqs in original space

22



CIEUIRENN I Branch and bound for MINLO

Outer approximations of nonlinear functions?

Quadratic functions

f(x) = 5X12 + 4X22 + 9X32 + dx1x0 + 6x1x3 + 12x0x3

23
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CIEUIRENN I Branch and bound for MINLO

Outer approximations of nonlinear functions?

Quadratic functions

f(x)= 5X12 =+ 4x22 =+ 9x32 +4xyx0 + 6x1x3 + 12x0%3
f(x)=(a+2x+ 3X3)2 4 4x12
f(x)= xf + 4)<12 with xa = x1 + 2x2 + 3x3

23



CIEUIRENN I Branch and bound for MINLO

Outer approximations of nonlinear functions?

Quadratic functions

f(x) = 5X12 + 4X22 + 9X3? + 4x1x0 + 6x1x3 + 12x5Xx3
f(x) = (x1 + 2x2 + 3x3)% + 4x2
f(x) = xf + 4X12 with xa = x1 + 2x2 4 3x3

Any convex quadratic function of rank k can be written as a separable
function with k additional variables

— Cholesky decomposition, eigendecomposition...

23



CIEUIRENN I Branch and bound for MINLO

Outer approximations of nonlinear functions?

Conic quadratic functions # (Handling the Lorentz cone)

n
X0 > ZX,Z
\ =1

*Vielma JP et al (2017) Extended formulations in mixed-integer conic quadratic
programming. Mathematical Programming Computation

24
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Outer approximations of nonlinear functions?

Conic quadratic functions # (Handling the Lorentz cone)

n
& ngZXfandXOZO
i=1

*Vielma JP et al (2017) Extended formulations in mixed-integer conic quadratic

programming. Mathematical Programming Computation
24



CIEUIRENN I Branch and bound for MINLO

Outer approximations of nonlinear functions?

Conic quadratic functions # (Handling the Lorentz cone)

n
& XSZZX;ZandXOZO
i=1

n
& x> Zx,—z/xo and xo > 0
i=1

S xp > Zy,- and xo >0, yi > x7/x0,Vi € [n]
=1

*Vielma JP et al (2017) Extended formulations in mixed-integer conic quadratic

programming. Mathematical Programming Computation
24



CIEUIRENN I Branch and bound for MINLO

Outer approximations of nonlinear functions?

Conic quadratic functions # (Handling the Lorentz cone)

n
& ngZXfandXOZO
i=1

n
& x> Zx,—z/xo and xp >0
i=1

S xp > Zy,- and xo >0, yi > x7/x0,Vi € [n]
=1

20x speedup when first implemented

*Vielma JP et al (2017) Extended formulations in mixed-integer conic quadratic

programming. Mathematical Programming Computation
24



CIEUIRENN I Branch and bound for MINLO

Summary

@ Lack of dual simplex hampers algorithms

Several approach exist in the literature °

Several popular approaches rely on linear outer approximations

o Effective implementations: integrated with branch-and-bound, calls to
interior point method, addition of variables, reformulations...

In practice, varying degrees of success

*Kronqvist J et al (2019) A review and comparison of solvers for convex MINLP.

Optimization and Engineering
25
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© Convexification
@ Convexification for MILO

25



Convex hull

Definition
Given a set X C R”, the convex hull of X, denoted as conv(X), is

@ The smallest convex set containing X

@ The set of all convex combinations of points in X.

-15 -10 —05 0.0 05 1.0 15 000 025 050 075 100 125 150 175 200
x

26



Convex optimization

Consider the optimization mina ' x
xeX

Proposition

If set X is convex, then any local minimum is a global minimum.

Intuition: Optimization over set X is “easy” under convexity

27



Convex optimization

Consider the optimization mina x
xeX

Proposition

If set X is convex, then any local minimum is a global minimum.

Intuition: Optimization over set X is “easy” under convexity

Proposition

The optimization problem is equivalent to

min  a'x

x€conv(X) ’

i.e., there exist a solution that is optimal for both.

Intuition: Any optimization problem can be reduced to a convex problem

27



Convexification

Convexification in mixed-integer linear optimization

What is the convex hull?

28



Convexification in mixed-integer linear optimization

5%
K

&
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S 150 X+y+z<4
’,g”:’ [
125¢%
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”’,s’;’,’;;;:g“,’s‘;g,‘g“ 0.75 8
o 050 <y<
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55 0.00
2 0<zL2, z€eZ

What is the convex hull?
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Convexification in mixed-integer linear optimization

Proposition (Meyer 1974)

The convex hull of set {x € R", z € Z™ : Ax + Gz < b} is a polyhedron.

Linear relaxation Convex hull

29



Convexification in mixed-integer linear optimization

Proposition (Meyer 1974)

The convex hull of set {x € R", z € Z™ : Ax + Gz < b} is a polyhedron.

Linear relaxation Convex hull

Instead of computing exact convex hulls, convexifications are dynamically
added to branch-and-bound algorithms via cutting planes

29



Convexification in mixed-integer nonlinear optimization

Py’ +z<4
0<x<3
0<y<3
0<z<2 z€eZ

What is the convex hull? How to implement in practice?

30
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© Convexification

@ Convexification for MINLO in sparse regression
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Least squares regression

Consider dataset® {(x;,y;)}™, where x; € R”

Least squares with ridge regularization

m

n
min (vi —a x)? + X E ij
x€R" £ ;

i=1 j=1

for some A >0

®Hoerl AE and Kennard RW (1970) Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics
31



Shortcomings of ordinary least squares

Prone to overfitting

STOP GLOBAL WARMING: BECOME A PIRATE

Glabal Average Temperature Vs, Mumber of Prates

E

> B

\

T maee | asooo pom) | IRED B0 &©

T
1

Chlobonl Foemrmgn Tamzpacatern (0]

iz of Pirstes (meprmarste)

WA VENGAMEA CRIG

Can fail to make meaningful predictions out-of-sample
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Convexification for MINLO in sparse regression
Shortcomings of ordinary least squares

BLOG POST / ARTIFICIAL INTELLIGENCE LAW ADVISOR

Artificial Intelligence

Discrimination and
in Financial Services: .

Unintended Consequences of
Al

By Robin Nunn
03.06.18

In some cases, interpretability is far more important than accuracy

33



Linear regression

Least squares in action with the “Communities and crime” dataset

@ Data with socio-economic data, law enforcement data and crime data
(US census, LEMAS survey and FBI)

@ n = 100 features, m = 1993 cities

34


https://archive.ics.uci.edu/dataset/183/communities+and+crime

Linear regression

Least squares in action with the “Communities and crime” dataset

@ Data with socio-economic data, law enforcement data and crime data
(US census, LEMAS survey and FBI)

@ n = 100 features, m = 1993 cities

Solution metrics Optimal solution found in milliseconds, R2 =0.84

34


https://archive.ics.uci.edu/dataset/183/communities+and+crime

Linear regression

Least squares in action with the “Communities and crime” dataset

@ Data with socio-economic data, law enforcement data and crime data
(US census, LEMAS survey and FBI)

@ n = 100 features, m = 1993 cities

Solution metrics Optimal solution found in milliseconds, R2 =0.84

Solution

34
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Convexification

Use parsimony

Occam'’s razor / Principle of parsimony (William of Ockham = 1300)

Why did the tree fall?
@ The wind

@ Two meteorites crashed into
earth. One hit the tree, the
other hit the first meteorite,
obliterating both and
destroying the evidence

35



Use parsimony

Occam'’s razor / Principle of parsimony (William of Ockham = 1300)

Why did the tree fall?
@ The wind

@ Two meteorites crashed into
earth. One hit the tree, the
other hit the first meteorite,
obliterating both and
destroying the evidence

Given two competing explanations, the simplest one is often right.

35



Use parsimony

Best subset selection

o Let k be the target complexity of the model. Among all (}) subsets
of k features, find the one that best fits the model

"Furnival G and Wilson R (1974) Regressions by leaps and bounds. Technometrics
36



Use parsimony

Best subset selection

o Let k be the target complexity of the model. Among all (}) subsets
of k features, find the one that best fits the model

@ Solve

m

2 n
i . _al 2
min 32 (- alx) +A Y
J:

i=1

n
st g0 < K
j=1

@ Implemented’ in R packages for n < 30

"Furnival G and Wilson R (1974) Regressions by leaps and bounds. Technometrics
36



Relaxations

Lasso/ elastic net (Tibshirani 1996, Zou and Hastie 2005)
@ The best convex underestimator of the “fg-norm” function
f(x) = Tgyz0y on —1 < x < 1 is the £1-norm |x|

37



Relaxations

Lasso/ elastic net (Tibshirani 1996, Zou and Hastie 2005)
@ The best convex underestimator of the “fg-norm” function
f(x) = Tgyz0y on —1 < x < 1 is the £1-norm ||

@ Solve

i=1
n

s.t. Z Ixi| <K
j=1

where & is a parameter (to be tuned) controlling sparsity vs accuracy
37

5 n
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Relaxations

= Google Scholar

. Robert Tibshirani

Professor of Biomedical Data Sciences, and of Statistics, Stanford

University,
Verified email at stanford.edu - Homepage

tatistics Applied i

TITLE

Unsupervised learning
T Hastie, R Tibshirani, J Friedman
The elements of statistical learning, 485-585

An introduction to the bootstrap
B Efron, RJ Tibshirani
CRC press

Regression shrinkage and selection via the lasso
R Tibshirani
Journal of the Royal Statistical Society. Series B (Methodological), 267-288

Generalized additive models
TJ Hastie
Statistical models in S, 249-307

Generalized Additive Models
TJ Hastie, RJ Tibshirani
CRC Press

CITED BY

42343

39319

26819

*
16171

learning machine learning  data science

YEAR

2009

1994

1996

2017

1990

a 6O

Cited by VIEW ALL
Al Since 2014

Citations 289715 126679
heindex 143 %6
i10-index 382 301
28000

21000

14000
7000
u

2012 2013 2014 2015 2016 2017 2018 2019 O
Co-authors VIEW ALL
Trevor Hastie >
Professor of Statistics, Stanford ...
Efron >
! Professor of statistics, Stanford
«» Jerome Friedman &
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Relaxations

= Google Scholar

Albert Einstein

Institute of Advanced Studies, Princeton
No verified email

Physics

TITLE

Can quantum-mechanical description of physical reality be considered complete?
A Einstein, B Podolsky, N Rosen
Physical review 47 (10), 777

Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heurischen
Gesichtpunkt

AEinstein

Ann. Phys. 17, 132-148

On the movement of small particles suspended in stationary liquids required by
the molecular-kinetic theory of heat

A Einstein

Annalen der Physik 17, 549-560

Zur Elektrodynamik bewegter Korper
A Einstein

Sitzungsber. K
A Einstein
Preuss. Akad. Wiss., Phys. Math. KI 3, 18

Graviton Mass and Inertia Mass
A Einstein
Ann Physik 35, 898

CITED BY

17493

*
11362

*
5504

*
4950

*
4814

YEAR

1935

1905

1905

1925

1911

a 0
Cited by VIEW ALL
All Since 2014
Citations 124162 33880
h-index 13 64
i10-index 370 206
8000
6000
4000
2000
0

2012 2013 2014 2015 2016 2017 2018 2019
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Relaxations

Lasso in action with the “Communities and crime” dataset (n = 100)

Solution metrics Optimal solution found in milliseconds

Solutions
Large x (R? = 0.81)

HousVacant
LemasPctOfficDrugUn
MalePctDivorce
NumStreet
PctHousNoPhone
PctIlleg
PctPersDenseHous
PctVacantBoarded
PopDens
pctWPubAsst
racepctblack

(oflcleloflofiofel-NoNclle]

.237656
.000206104
.0260223
.14165
.0266273
.311418
.197454
.0405917
.0193849
.0445904
.186306

Small x (R? = 0.25)

LandArea
NumIlleg
NumImmig
PctPersDenseHous

o O oo

.121248
.685344
.183812
.000258902

40


https://archive.ics.uci.edu/dataset/183/communities+and+crime

Mixed-integer optimization

Mixed-integer optimization 8°

@ Best subset selection can be formulated as a MIO
@ Letting binary variable z; = 1 iff feature j is included, solve

m

2 n
. T 2
min E i—a; x| + A g X
xeR?,ze{0,1}7 £ (yl ! ) = J

=

n
s.t. sz < k
Jj=1

— Mz; < x; < Mz; Vi=1,...,n

8Bertsimas D et al (2016) Best subset selection via a modern optimization lens. The
Annals of Statistics

°Cozad A et al (2014) Learning surrogate models for simulation-based optimization.
AIChE.
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Mixed-integer optimization

MIO in action with the “Communities and crime” dataset (n = 100)

Solution (R? =0.81)

HousVacant 0.250896
MalePctDivorce 0.135992
PctIlleg 0.524062
PctPersDenseHous 0.175159


https://archive.ics.uci.edu/dataset/183/communities+and+crime

Mixed-integer optimization

MIO in action with the “Communities and crime” dataset (n = 100)

Solution (R? =0.81)

HousVacant 0.250896
MalePctDivorce 0.135992
PctIlleg 0.524062
PctPersDenseHous 0.175159

Solution metrics 20 hours to optimality, millions of nodes (Gurobi, 2022)
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Convexification for MINLO in sparse regression
Mixed-integer optimization

Is best subset selection really worth it?10

o Best subset is slow

e Lasso is better in some situations, and can be
improved otherwise

Of course!11?

e Solution times are appropriate in many cases
e Lasso is better in very low SNR regimes, and best
subset can be adapted

Both methods have merits!12?

loHastie T, Tibshirani R, Tibshirani R (2020) Best subset, forward stepwise or Lasso? Analysis and recommendations based
on extensive comparisons. Statistical Science

llMazumder R, Radchenko P, Dedieu A (2023) Subset selection with shrinkage: Sparse linear modeling when the SNR is
low. Operations Research

Chen Y, Taeb A, Biihimann P (2020) A look at robustness and stability of £;- versus £g-regularization: Discussion of
papers by Bertsimas et al. and Hastie et al. Statistical Science
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Improving the formulation

How good is the convex relaxation? z € {0,1}" - 0<z<1

m n
2
. T 2
min i—a x| + A X
xER,0<z<1 Z <y b ) z; ’
J:

1=

n
s.t. sz < k
Jj=1

— Mz; < x; < Mz; Vi=1,...,n
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Improving the formulation

How good is the convex relaxation? z € {0,1}" - 0<z<1

m n
2
. T 2
min i—a x| + A X
xER,0<z<1 Z <y b ) z; ’
J:

1=

n
s.t. sz < k
Jj=1

— Mz; < x; < Mz; Vi=1,...,n

In an optimal solution, zI' = [x;[/M

—= The continuous relaxation is in fact lasso!
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Improving the formulation

How good is the convex relaxation? z € {0,1}" - 0<z<1

m n
2
. T 2
min i—a x| + A X
xER,0<z<1 Z (y’ ! ) z; ’
J:

1=

n
s.t. sz < k
Jj=1

— Mz; < x; < Mz; Vi=1,...,n

In an optimal solution, zI' = [x;[/M

—= The continuous relaxation is in fact lasso!

Since lasso is not a good approximation, this formulation is slow...
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Improving the formulation

Improve the convex relaxation Need to exploit nonlinearities

m 2 n
min E (y,- - a,-Tx> +A E t
Rn,z€{0,1}",tcR?”
x€R",ze{0,1}",teR] = =

st.x?<t;  Vj=1,...,n

anzf'ék
j=1

— Mz < x; < Mz; Vi=1,...,n
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Improving the formulation

Improve the convex relaxation Need to exploit nonlinearities

m 2 n
min E (y,- - a,-Tx> +A E t
n 1 n n
x€R",ze{0,1}",teR’] ] =

2 .
st.xi <t Vi=1,...,n

Xn:ZfSk
j=1

— Mz < x; < Mz; Vi=1,...,n

What is the convex hull of

Sz{xeR,ze{O,l},teR:ngt,x(l—z)zO}?
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Improving the formulation

5:{(x,z,t)€R3:O§t,X:z:O}U{(x,z,t)€R3:ngt,z:l}?

S S

(x,z,t) € conv(S) if and only 3(x;, z;, t;) € S; and \; € R’ such that

X = A1x1+ Aoxp, Zz = A1z1 + Aozo, t = Aty + Aoty
AM+X=1,A2>0, >0

(x1,z1,t1) €ES1 < x1=21=0,t, >0

(x2, 22, 02) € S & x22 <t,z=1

46



Improving the formulation

5:{(x,z,t)€R3:O§t,X:z:O}U{(x,z,t)€R3:ngt,z:l}?

S S

(x,z,t) € conv(S) if and only 3(x;, z;, t;) € S; and \; € R’ such that

X = A1x1+ Aoxp, Zz = A1z1 + Aozo, t = Aty + Aoty
AM+X=1,A2>0, >0

(x1,z1,t1) €ES1 < x1=21=0,t, >0

(x2, 22, 02) € S & x22 <t,z=1

Change of variables: X; = x;\;, Zi = z; \;, iN',' =t
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Improving the formulation

5:{(x,z,t)€R3:O§t,X:z:O}U{(x,z,t)€R3:ngt,z:l}?

S S

(x,z,t) € conv(S) if and only 3(x;, z;, t;) € S; and \; € R’ such that

X=X+5%,z=51+5%,t=t+b
A+X=1, A >0, A >0

(x1,z1,t1) €S &5 =2 =0, >0

(x2,20, ) € So & (5o/M2)? < o/ N2, 50/ Mo =1

Change of variables: X; = x;\;, Zi = z; \;, iN',' =t
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Improving the formulation

5:{(x,z,t)€R3:O§t,X:z:O}U{(x,z,t)€R3:ngt,z:l}?

S S

(x,z,t) € conv(S) if and only 3(x;, z;, t;) € S; and \; € R’ such that

X=X+5%,z=52+5,t=1+1b
AM+X=1,A2>0, >0
((,21,)eEMS1 &5 =2=0,>0
(%2,22, ) € Sy & %5/ M < b, 5o = Ny

Change of variables: X; = x;\;, Zi = z; \;, iN',' =t

46



Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that

X=)~<1+)?2,Z=21+22,t=171+i"2
)\1+/\2:17 )\1207 )‘220
51=2=0,>0

B/ <b, 5=

47



Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that

X=)~<1+)?2,Z=21+22,t=171+i"2
)\1+/\2:17 )\1207 )‘220
51=2=0,5>0

B/ <b, 5=

47



Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that

X=)?2,Z=22,t=fl+fg
)\1+)\2:17 )‘1207 /\220
t1 >0

5/ < b, 2= X2
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Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that

X=)?2,Z=22,t=fl+fg
)\1+)\2:17 )‘1207 /\220
t1 >0

B/ <ty 5= No
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Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that

X=X, z=M,t=1 +1b
AMM+X=1, A >0, A>0
t1 >0

)?22/)\2352
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Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that

X=X, z=M,t=1t+1b
AMM+X=1, A >0, A>0
t1 >0

)?22/)\2352

47



Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that

t=t+b
M+22=1,A21>0,z>0
t1>0

xz/zgfg

47



Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that

t=t+b
M+22=1,A212>0,z>0
t1>0

xz/zgfg

47



Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that
t=t + 1t
z<1l,z>0
t1>0
x2/z <b

47



Improving the formulation

(x,z,t) € conv(S) if and only 3(X;, %, ;) € S; and \; € R such that
t=t +1t
z<1l,z>0
t1>0
x2/z <b

47



Improving the formulation

(x,z,t) € conv(S) if and only!3 3(%;, %, ;) € S; and \; € R’ such that

t2x2/z,0§z§1

Proposition (Frangioni and Gentile 2006)

The convex hull of set

S={xeR,ze{0,1},teR:x* < t,x(1-2z) =0}

is

conv(S) = {(x,z,t) ER*: x* < tz, 0 < z < 1}

BFrangioni A and Gentile C (2006) Perspective cuts for a class of convex 0-1
mixed-integer programs. Mathematical Programming
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Improving the formulation

Improve the convex relaxation 1413
m 2 n
min E (y,' — a,-Tx> + A E t;
n n n
x€R",z€{0,1}",teR’] 1 =
s.t.><j2§tj Vi=1,...,n

zn:zj- < k
j=1

— Mz < x; < Mz; Vi=1,...,n

“Dong H et al (2018) Regularization vs relaxation: A convexification perspective of
statistical variable selection. Optimization Online
5Xie W and Deng X (2020) Scalable algorithms for the sparse ridge regression. SIAM

Journal on Optimization
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Improving the formulation

Improve the convex relaxation 1413
m 2 n
min E (y;—a?x) +A E t
n n n
x€R",z€{0,1}",teR’] i1 =
s.t.><j2§tjzj Vi=1,...,n

zn:zj- < k
j=1

— Mz < x; < Mz; Vi=1,...,n

The perspective reformulation! (Disjunctive programming)

“Dong H et al (2018) Regularization vs relaxation: A convexification perspective of
statistical variable selection. Optimization Online

5Xie W and Deng X (2020) Scalable algorithms for the sparse ridge regression. SIAM
Journal on Optimization
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Improving the formulation

Constraint tz > x? with t,z > 0 is convex and SOCP representable

It represents a substantial improvement in the relaxation quality

t
ocrNwsLON®OD

Graph of t = x* (big-M) Graph of t = x*/z
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Improving the formulation

Constraint tz > x? with t,z > 0 is convex and SOCP representable

It represents a substantial improvement in the relaxation quality

t
ocrNwsLON®OD

t
crNwANAN®OD

Graph of t = x* (big-M) Graph of t = x*/z
Solution times in “Communities and crime”: 2s (15,000x speedup)
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Disjunctive programming

Disjunctive programming was invented by Egon Balas in the 80s

https://www.wsj.com/articles/

egon-balas-jailed-and-tortured-in-romania-found-salvation-in-math-115563869800

ﬂ Disjunctive
Programming

D springer

Generalizes to nonlinear optimization!®

®Ceria S and Soares J (1999) Convex programming for disjunctive convex
optimization. Mathematical Programming
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https://www.wsj.com/articles/egon-balas-jailed-and-tortured-in-romania-found-salvation-in-math-11553869800

Disjunctive Programming

Given a convex function f : R” — R, consider

AF(x/\) if A>0
FT(x,A) = < limyor AF(x/A) ifA=0

+00 otherwise.

@ f™ is convex and homogeneous

o If f(x) =ao+a'x, then ‘
fT(x,A\) = apA +a' x \ ‘
\

o If f(x) = x?, then f™(x,z) = x*/z with =22,
0/0 =0 and x2/0 = +c if x #0
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Disjunctive programming

Forie{l,...,k} let S;={x € R": gj(x) <0, j=1...,m} convex.
Then x € cl conv (Ule 5;) iff 3x" € R" and A’ € R, such that

x'e ST(\) = {XER”:gg(X,)\i)SO,j:l...,m}
K K

x:Zx"7 and 1:ZAI.
i=1 i=1

S2

Sy

52



Disjunctive programming

Forie{l,...,k} let S;={x € R": gj(x) <0, j=1...,m} convex.
Then x € cl conv (Uff:1 S,-) iff 3x’ € R" and \' € Ry such that

x' € ST(\) = {XER”:gg(X,)\i)SO,j:l...,m}
k k

x:Zx"7 and 1:ZAI.
i=1 i=1

S2

52



Disjunctive programming

Forie{l,...,k} let S;={x € R": gj(x) <0, j=1...,m} convex.
Then x € cl conv (Ui:l 5;) iff 3x' € R” and A" € R, such that

x' € ST(\ {XER”'gU(X)\)<OJ—1 ,m}
x:Zx"7 and1:Z)\i.
i=1 i=1
S
3
N\
AN
AN
X\
S N

52



Disjunctive programming

Forie{l,...,k} let S;={x € R": gj(x) <0, j=1...,m} convex.
Then x € cl conv (Uf:1 5;) iff 3x" € R" and A’ € R, such that

xi€5f(A):{XER":g,-j-r(x,)\")SO,j:l...,m}
K K

X:in7 and IZZ)\i.
i=1 i=1

S2

52



Disjunctive programming

Implications of disjunctive programming Given any disjunctive set, we can
create an equivalent convex (conic-representable) representation by
creating k copies x' of variables x, and mk constraints g7 (x’,\') < 0. In
other words, formulation increases by a factor of k.

Is it useful?
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Disjunctive programming

Implications of disjunctive programming Given any disjunctive set, we can
create an equivalent convex (conic-representable) representation by
creating k copies x' of variables x, and mk constraints g7 (x’,\') < 0. In
other words, formulation increases by a factor of k.

Is it useful? If used carefully
@ Number of additional variables can grow exponentially
@ Fourier—Motzkin elimination can be difficult in closed form

@ Cuts from disjunctive programming may be hard to implement

53



Implementation of disjunctive programming

l
S=|J{xeR": fi(x) <0}

i=1

Implementation 1 Add variables {(x', ;) € R""1}¢_ and formulate as

4 J4
x=) x1=) X, A>0
i=1 i=1

fr(x' ) <0 Ve{l,.., 0}

o Can be effective when ¢ is small (e.g., £ = 2)

@ But number of variables and constraints may be prohibitive...
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Implementation of disjunctive programming

l
S=|J{xeR": fi(x) <0}

i=1

Implementation 2 Add linear cuts using representation

0> max a'x+p
o€R",BER yERE

¢ ¢
+ mT)}{ Za .—Zﬁ)\iJrZ’Yifiﬂ(xia)\i)}
x! i=1 i=1

@ Given fixed x, solve separation (max) and add linear cut
@ Requires computing Fenchel conjugates (min)

@ But linear cuts can be ineffective...
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Implementation of disjunctive programming

l
S=|J{xeR": fi(x) <0}

i=1

Implementation 3 Add nonlinear cuts (e.g., Fourier-Motzkin with duality)

@ May achieve a good compromise between convex hull and linear cuts
@ But adding nonlinear cuts in branch-and-bound is not easy
o Not supported in OA branch-and-bound solvers

e Could require column generation to implement effectively
e May be of different classes than original function
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Low-rank functions
What is the convex hull of
2
S= {XER”,ZG {0,1}" teR: (aTx> <t, xo(l—z)}

where “o" is the entrywise product, i.e., xo (1 —2z) < x;(1—z)=0
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Low-rank functions
What is the convex hull of
2
S= {XER”,ZG {0,1}" teR: (aTx> <t, xo(l—z)}

where “o" is the entrywise product, i.e., xo (1 —2z) < x;(1—z)=0

Disjunctive programming

S= U {tunt w1 xo1- -0}
ze{0,1}"

—> Exponential number of variables/constraints
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Low-rank functions

Consider optimization over set S,

2
min c'z+d x+ (aTx> st. xo(1-2)
x€R", ze{0,1}"

58



Low-rank functions

Consider optimization over set S,

2
min c'z+d " x+ (aTx> st. xo(1—2)
xeRm,ze{0,1}"

d # pia for some p € R = Jh e R"suchthat hTa=0and h'd <0
= Unbounded, letting z =1 and x = ~vh with v — oo

s
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Low-rank functions
Consider optimization over set S,

2
min c'z+d x+ (aTx) st. xo(1-2)
x€Rn,ze{0,1}"

If d = pa, then optimization

min c'z+ py + y2 s.t. y= a'

x, xo(1l—2z)
xeR" ze{0,1}",yeR

has an optimal solution with at most one non-zero x;

= All extreme points of conv(S) have at most one non-zero x;
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Low-rank functions

Given any convex function'” f : Rk — R and A € R¥*", define

S={xeR"zec{0,1}",teR:t>f(Ax), xo(1-2)=0}

Proposition (Han and Gémez 2024)

cl conv(S) = cl conv U V(Z)UR
IC[n]:|Z|<k
where

V(I) = {{x €R"z€ {0,1}", t €R:t > f(Ax), x =OVi ¢ T, z = 1 Vi € T}
R={{xeR"ze{0,1}"tecR:t>0, Ax=0, z=1}}

"Han S and Gémez A (2024) Compact extended formulations for low rank functions
with indicators. Mathematics of Operations Research



Low-rank functions

Computing

cl conv U V(Z)UR | vs. cl conv U V(Z)
IC[nf|Z|<k zC(n]

involves O(nk) vs 2" disjunctions
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Low-rank functions

Computing
cl conv U V(Z)UR | vs. cl conv U V(Z)
ZC[n):|Z|<k ZC(n]
involves O(nk) vs 2" disjunctions
For special case of k =1,
S= {XER”,ZG{O,l}”,tER:(aTx)2 < t,xo(1—z):o},
we find after Fourier-Motzkin elimination that

cl conv(S) = {(x,z, t) e R>™:(aTx)?/min{1,1Tz} <t, 0<z< 1}



Rank-one convexification in sparse regression

Can be interpreted as strong regularization'®

175 175 175

15 15 15

125 125 1.25

0.75 0.75

0.75 B
0.5 05

0.5
025 025 1 025 1
0.5 0.5
o o 0 o 0
F"ng 0.5 P"Egm 05
TSSE33gy R PR
Lasso as regularization Perspective as regularization ~ Rank-one as regularization

e In tall instances (n << m), solution from relaxation is integral in practice
e But relaxation is more sophisticated (SOCP— SDP)

BAtamtiirk A and Gémez A (2025) Rank-one convexifications for sparse regression.

Journal of Machine Learning Research.
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Full implementation

Tailored branch-and-bound algorithm based on perspective relaxation'®

@ Project out unnecessary variables

@ Coordinate descent to solve relaxations
@ Active sets

@ Dual bounds

@ Strong branching

®Hazimeh H et al (2022) Sparse regression at scale: Branch-and-bound rooted in
first-order optimization. Mathematical Programming
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Full implementation

Tailored branch-and-bound algorithm based on perspective relaxation'®

@ Project out unnecessary variables

@ Coordinate descent to solve relaxations

@ Active sets

@ Dual bounds

@ Strong branching
p LOBnB GRB MSK B
I(]3 0.7 70 92 (4%)
10* 3 (15%) 1697 5
10° 34 - - _
100 1112 & = e

Time comparison (in seconds) with Gurobi, Mosek and Baron

®Hazimeh H et al (2022) Sparse regression at scale: Branch-and-bound rooted in

first-order optimization. Mathematical Programming
62



The journey so far...

Number of features (log scale)

1000000

LOBnB
A
100000
10000
screening
1000 perspective A
100 big M A
A
A
10 leapsand
bounds
1
2013 2015 2017 2019 2021 2023
Year

Dimension of problems that can be comfortably solved
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Conclusion

Convexification is harder than in MILO

@ Some methods extend (less intuitive)

e Disjunctive programming
o RLTs
o Lifting

@ Implementation is non-trivial

@ ... but it can work
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